Osobiście, jeśli jest to data lub może to być data, sugeruję, aby zawsze przechowywać ją jako jedną. Zasadniczo łatwiej jest pracować.
- Data to 4 bajty.
- Smallint ma 2 bajty (potrzebujemy dwóch)
- ... 2 bajty: jeden smallint na rok
- ... 2 bajty: jeden smallint na miesiąc
Możesz mieć jedną datę, która będzie wspierać dzień, jeśli kiedykolwiek będziesz jej potrzebować, lub jedną smallint
na rok i miesiąc, która nigdy nie zapewni dodatkowej precyzji.
Przykładowe dane
Spójrzmy teraz na przykład. Utwórzmy milion dat dla naszej próbki. To około 5000 wierszy na 200 lat między 1901 a 2100. Każdego roku powinno być coś na każdy miesiąc.
CREATE TABLE foo
AS
SELECT
x,
make_date(year,month,1)::date AS date,
year::smallint,
month::smallint
FROM generate_series(1,1e6) AS gs(x)
CROSS JOIN LATERAL CAST(trunc(random()*12+1+x-x) AS int) AS month
CROSS JOIN LATERAL CAST(trunc(random()*200+1901+x-x) AS int) AS year
;
CREATE INDEX ON foo(date);
CREATE INDEX ON foo (year,month);
VACUUM FULL ANALYZE foo;
Testowanie
Prosty WHERE
Teraz możemy przetestować teorie nieużywania daty. Każdą z nich przeprowadziłem kilka razy, aby rozgrzać.
EXPLAIN ANALYZE SELECT * FROM foo WHERE date = '2014-1-1'
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=11.56..1265.16 rows=405 width=14) (actual time=0.164..0.751 rows=454 loops=1)
Recheck Cond: (date = '2014-04-01'::date)
Heap Blocks: exact=439
-> Bitmap Index Scan on foo_date_idx (cost=0.00..11.46 rows=405 width=0) (actual time=0.090..0.090 rows=454 loops=1)
Index Cond: (date = '2014-04-01'::date)
Planning time: 0.090 ms
Execution time: 0.795 ms
Teraz wypróbujmy inną metodę z osobnymi
EXPLAIN ANALYZE SELECT * FROM foo WHERE year = 2014 AND month = 1;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=12.75..1312.06 rows=422 width=14) (actual time=0.139..0.707 rows=379 loops=1)
Recheck Cond: ((year = 2014) AND (month = 1))
Heap Blocks: exact=362
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..12.64 rows=422 width=0) (actual time=0.079..0.079 rows=379 loops=1)
Index Cond: ((year = 2014) AND (month = 1))
Planning time: 0.086 ms
Execution time: 0.749 ms
(7 rows)
Szczerze mówiąc, nie wszystkie są 0,749 .. niektóre są trochę mniej więcej, ale to nie ma znaczenia. Wszystkie są względnie takie same. To po prostu nie jest potrzebne.
W przeciągu jednego miesiąca
Teraz bawmy się dobrze. Załóżmy, że chcesz znaleźć wszystkie interwały w ciągu 1 miesiąca od stycznia 2014 r. (Tego samego miesiąca, którego użyliśmy powyżej).
EXPLAIN ANALYZE
SELECT *
FROM foo
WHERE date
BETWEEN
('2014-1-1'::date - '1 month'::interval)::date
AND ('2014-1-1'::date + '1 month'::interval)::date;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=21.27..2310.97 rows=863 width=14) (actual time=0.384..1.644 rows=1226 loops=1)
Recheck Cond: ((date >= '2013-12-01'::date) AND (date <= '2014-02-01'::date))
Heap Blocks: exact=1083
-> Bitmap Index Scan on foo_date_idx (cost=0.00..21.06 rows=863 width=0) (actual time=0.208..0.208 rows=1226 loops=1)
Index Cond: ((date >= '2013-12-01'::date) AND (date <= '2014-02-01'::date))
Planning time: 0.104 ms
Execution time: 1.727 ms
(7 rows)
Porównaj to z metodą łączoną
EXPLAIN ANALYZE
SELECT *
FROM foo
WHERE year = 2013 AND month = 12
OR ( year = 2014 AND ( month = 1 OR month = 2) );
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=38.79..2999.66 rows=1203 width=14) (actual time=0.664..2.291 rows=1226 loops=1)
Recheck Cond: (((year = 2013) AND (month = 12)) OR (((year = 2014) AND (month = 1)) OR ((year = 2014) AND (month = 2))))
Heap Blocks: exact=1083
-> BitmapOr (cost=38.79..38.79 rows=1237 width=0) (actual time=0.479..0.479 rows=0 loops=1)
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..12.64 rows=421 width=0) (actual time=0.112..0.112 rows=402 loops=1)
Index Cond: ((year = 2013) AND (month = 12))
-> BitmapOr (cost=25.60..25.60 rows=816 width=0) (actual time=0.218..0.218 rows=0 loops=1)
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..12.62 rows=420 width=0) (actual time=0.108..0.108 rows=423 loops=1)
Index Cond: ((year = 2014) AND (month = 1))
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..12.38 rows=395 width=0) (actual time=0.108..0.108 rows=401 loops=1)
Index Cond: ((year = 2014) AND (month = 2))
Planning time: 0.256 ms
Execution time: 2.421 ms
(13 rows)
Jest zarówno wolniejszy, jak i brzydszy.
GROUP BY
/ORDER BY
Metoda łączona,
EXPLAIN ANALYZE
SELECT date, count(*)
FROM foo
GROUP BY date
ORDER BY date;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------
Sort (cost=20564.75..20570.75 rows=2400 width=4) (actual time=286.749..286.841 rows=2400 loops=1)
Sort Key: date
Sort Method: quicksort Memory: 209kB
-> HashAggregate (cost=20406.00..20430.00 rows=2400 width=4) (actual time=285.978..286.301 rows=2400 loops=1)
Group Key: date
-> Seq Scan on foo (cost=0.00..15406.00 rows=1000000 width=4) (actual time=0.012..70.582 rows=1000000 loops=1)
Planning time: 0.094 ms
Execution time: 286.971 ms
(8 rows)
I znowu metodą kompozytową
EXPLAIN ANALYZE
SELECT year, month, count(*)
FROM foo
GROUP BY year, month
ORDER BY year, month;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------
Sort (cost=23064.75..23070.75 rows=2400 width=4) (actual time=336.826..336.908 rows=2400 loops=1)
Sort Key: year, month
Sort Method: quicksort Memory: 209kB
-> HashAggregate (cost=22906.00..22930.00 rows=2400 width=4) (actual time=335.757..336.060 rows=2400 loops=1)
Group Key: year, month
-> Seq Scan on foo (cost=0.00..15406.00 rows=1000000 width=4) (actual time=0.010..70.468 rows=1000000 loops=1)
Planning time: 0.098 ms
Execution time: 337.027 ms
(8 rows)
Wniosek
Zasadniczo niech mądrzy ludzie wykonują ciężką pracę. Datemath jest trudny, moi klienci nie płacą mi wystarczająco. Robiłem te testy. Trudno mi było dojść do wniosku, że mogę uzyskać lepsze wyniki niż date
. Przestałem próbować.
AKTUALIZACJE
@ Koń_nazwa_na_nazwy sugerowany do mojego testu w ciągu jednego miesiącaWHERE (year, month) between (2013, 12) and (2014,2)
. Moim zdaniem, choć fajne, jest to bardziej złożone zapytanie i wolałbym go unikać, chyba że byłby to zysk. Niestety, było jeszcze wolniej, chociaż jest blisko - co jest bardziej oddalone od tego testu. To po prostu nie ma większego znaczenia.
EXPLAIN ANALYZE
SELECT *
FROM foo
WHERE (year, month) between (2013, 12) and (2014,2);
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=5287.16..15670.20 rows=248852 width=14) (actual time=0.753..2.157 rows=1226 loops=1)
Recheck Cond: ((ROW(year, month) >= ROW(2013, 12)) AND (ROW(year, month) <= ROW(2014, 2)))
Heap Blocks: exact=1083
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..5224.95 rows=248852 width=0) (actual time=0.550..0.550 rows=1226 loops=1)
Index Cond: ((ROW(year, month) >= ROW(2013, 12)) AND (ROW(year, month) <= ROW(2014, 2)))
Planning time: 0.099 ms
Execution time: 2.249 ms
(7 rows)
month
który zawiera dwie liczby całkowite. Ale myślę, że jeśli nigdy, nigdy nie potrzebujesz dnia miesiąca, użycie dwóch liczb całkowitych jest prawdopodobnie łatwiejsze