Pomoc z zapytaniem PIVOT


12

Mam tabelę o poniższej strukturze:

CREATE TABLE [dbo].[AUDIT_SCHEMA_VERSION](
    [SCHEMA_VER_MAJOR] [int] NOT NULL,
    [SCHEMA_VER_MINOR] [int] NOT NULL,
    [SCHEMA_VER_SUB] [int] NOT NULL,
    [SCHEMA_VER_DATE] [datetime] NOT NULL,
    [SCHEMA_VER_REMARK] [varchar](250) NULL
);

niektóre przykładowe dane (wydaje się problem z sqlfiddle .. więc umieszczenie niektórych przykładowych danych):

INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,6,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,6,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,7,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,10,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,12,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,12,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,13,CAST('20140417 18:10:44.100' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,5,0,CAST('20140417 18:14:14.157' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,6,0,CAST('20140417 18:14:23.327' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,7,0,CAST('20140417 18:14:32.270' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,8,0,CAST('20141209 09:38:40.700' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,9,0,CAST('20141209 09:43:04.237' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,10,0,CAST('20141209 09:45:19.893' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,13,0,CAST('20150323 14:54:30.847' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,10,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,14,CAST('20140417 18:11:07.977' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,15,CAST('20140417 18:11:13.130' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,2,0,CAST('20140417 18:12:11.200' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,3,0,CAST('20140417 18:12:33.330' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,4,0,CAST('20140417 18:12:48.803' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,13,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(1,16,13,CAST('20130405 04:41:25.000' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,11,0,CAST('20141209 09:45:58.993' as DATETIME),'Stored procedure build')
INSERT INTO [AUDIT_SCHEMA_VERSION]([SCHEMA_VER_MAJOR],[SCHEMA_VER_MINOR],[SCHEMA_VER_SUB],[SCHEMA_VER_DATE],[SCHEMA_VER_REMARK])
VALUES(2,12,0,CAST('20141209 09:46:50.070' as DATETIME),'Stored procedure build');

Oto SQLFiddleniektóre przykładowe dane.

Czy ktoś z doświadczeniem T-sql może mi pomóc w uzyskaniu ostatecznego rezultatu? Wiem, że PIVOT(z dynamicznymi kolumnami) będzie to właściwe podejście, ale nie mogę tego rozgryźć.

Oczekiwane rezultaty :

wprowadź opis zdjęcia tutaj

Do tej pory mam poniżej:

select row_number() over (
        partition by CONVERT(varchar(10), SCHEMA_VER_DATE, 110) order by SCHEMA_VER_DATE 
        ) as rownum
    ,CONVERT(varchar(10), SCHEMA_VER_DATE, 110) as UPG_DATE
    ,CONVERT(varchar(1), SCHEMA_VER_MAJOR) + '.' + CONVERT(varchar(2), SCHEMA_VER_MINOR) + '.' + CONVERT(varchar(2), SCHEMA_VER_SUB) as SCHEMA_VER
from audit_schema_version
where SCHEMA_VER_REMARK like 'Stored procedure build'
order by UPGRADE_DATE 

wprowadź opis zdjęcia tutaj

Odpowiedzi:


20

To jest trochę bałagan, aby uzyskać końcowy wynik, ponieważ masz wiele SCHEMA_VERdla każdej daty. Zanim pokażę, jak to zrobić za pomocą dynamicznego SQL, najpierw pokażę, jak to zrobić za pomocą kodu statycznego, aby uzyskać prawidłową logikę. Aby uzyskać końcowy wynik, możesz użyć zarówno opcji przestawnej, jak i odblokowanej.

Ale najpierw zmienię oryginalne zapytanie, aby użyć następujących elementów:

select 
    row_number() over (
    partition by CONVERT(varchar(10), SCHEMA_VER_DATE, 110) order by SCHEMA_VER_MAJOR, SCHEMA_VER_MINOR, SCHEMA_VER_SUB
    ) as minrownum
, row_number() over (
    partition by CONVERT(varchar(10), SCHEMA_VER_DATE, 110) order by SCHEMA_VER_MAJOR desc, SCHEMA_VER_MINOR desc, SCHEMA_VER_SUB desc
    ) as maxrownum
,CONVERT(varchar(10), SCHEMA_VER_DATE, 110) as UPG_DATE
,CONVERT(varchar(1), SCHEMA_VER_MAJOR) + '.' + CONVERT(varchar(2), SCHEMA_VER_MINOR) + '.' + CONVERT(varchar(2), SCHEMA_VER_SUB) as SCHEMA_VER
from audit_schema_version
where SCHEMA_VER_REMARK like 'Stored procedure build';

Zobacz SQL Fiddle with Demo . Kiedyś row_number()dostawałem pierwszy i ostatni SCHEMA_VERdla każdej daty. Jest to potrzebne, aby można było połączyć tylko te wartości razem w komentarzu.

Następnie użyłbym tabeli tymczasowej do przechowywania wierszy, które mają a minrownumi maxrownum1. Tabela tymczasowa zawierałaby znaki upg_datei comment. Ta kolumna komentarza zawiera połączony ciąg pary SCHEMA_VERdla każdej daty.

create table #srcData
(
    upg_date varchar(10),
    comment varchar(500)
);

Kod wypełniający tabelę tymczasową to:

;with cte as
(
  select 
        row_number() over (
        partition by CONVERT(varchar(10), SCHEMA_VER_DATE, 110) order by SCHEMA_VER_MAJOR, SCHEMA_VER_MINOR, SCHEMA_VER_SUB
        ) as minrownum
    , row_number() over (
        partition by CONVERT(varchar(10), SCHEMA_VER_DATE, 110) order by SCHEMA_VER_MAJOR desc, SCHEMA_VER_MINOR desc, SCHEMA_VER_SUB desc
        ) as maxrownum
    ,CONVERT(varchar(10), SCHEMA_VER_DATE, 110) as UPG_DATE
    ,CONVERT(varchar(1), SCHEMA_VER_MAJOR) + '.' + CONVERT(varchar(2), SCHEMA_VER_MINOR) + '.' + CONVERT(varchar(2), SCHEMA_VER_SUB) as SCHEMA_VER
  from audit_schema_version
  where SCHEMA_VER_REMARK like 'Stored procedure build'
)
insert into #srcData
select distinct
    c1.UPG_DATE,
    comment 
        = STUFF((
                  SELECT ' - ' + c2.SCHEMA_VER 
                  FROM cte c2
                  WHERE (c2.minrownum = 1 or c2.maxrownum = 1)
                    and c1.upg_date = c2.upg_date
                  order by c2.minrownum
                  FOR XML PATH(''), TYPE).value('.[1]', 'nvarchar(max)'), 1, 2, '') 
from cte c1
where c1.minrownum = 1 or c1.maxrownum = 1;

To pierwsze przejście przez Twoje dane zapewnia:

|   upg_date |           comment |
|------------|-------------------|
| 03-23-2015 |            2.13.0 |
| 04-05-2013 |  1.6.13 - 1.16.13 |
| 04-17-2014 |   1.16.13 - 2.7.0 |
| 12-09-2014 |    2.8.0 - 2.12.0 |

Teraz nadal musisz uzyskać liczbę poszczególnych dat w roku i pełny konkatenowany komentarz. To właśnie tutaj wchodzi w grę unpivot. Możesz użyć następującego kodu, aby utworzyć pełny komentarz dla każdego roku i uzyskać liczbę.

select distinct 
    Yr =  right(s1.upg_date, 4),
    cnt = count(*) over(partition by right(s1.upg_date, 4)),
    fullcomment 
            = STUFF((
                      SELECT '; ' + s2.comment 
                      FROM #srcData s2
                      WHERE right(s1.upg_date, 4) = right(s2.upg_date, 4)
                      FOR XML PATH(''), TYPE).value('.[1]', 'nvarchar(max)'), 1, 2, '') 
from #srcData s1;

Zobacz SQL Fiddle with Demo . Dane wyglądają teraz następująco:

|   Yr | cnt |                       fullcomment |
|------|-----|-----------------------------------|
| 2013 |   1 |                  1.6.13 - 1.16.13 |
| 2014 |   2 |  1.16.13 - 2.7.0;  2.8.0 - 2.12.0 |
| 2015 |   1 |                            2.13.0 |

Jak widać, masz wiele kolumn, które należy obrócić, dzięki czemu możesz rozdzielić zarówno kolumnę, jak fullcommenti cntkolumnę na wiele wierszy. Można to zrobić za pomocą funkcji UNPIVOT lub CROSS APPLY. Wolę zastosować tutaj krzyżowanie, ponieważ chcesz połączyć wartości razem, aby utworzyć nowe nazwy kolumn:

;with cte as
(
    select distinct 
        Yr =  right(s1.upg_date, 4),
        cnt = count(*) over(partition by right(s1.upg_date, 4)),
        fullcomment 
                = STUFF((
                          SELECT '; ' + s2.comment 
                          FROM #srcData s2
                          WHERE right(s1.upg_date, 4) = right(s2.upg_date, 4)
                          FOR XML PATH(''), TYPE).value('.[1]', 'nvarchar(max)'), 1, 2, '') 
    from #srcData s1
) 
select [2015], [2015_comment], [2014], [2014_comment], [2013], [2013_comment]
from
(
    select c.col, val
    from cte d
    cross apply
    (
        values 
            (Yr, cast(cnt as nvarchar(50))),
            (Yr+'_comment', fullcomment)
    ) c (col, val)  
) d
pivot
(
    max(val)
    for col in ([2015], [2015_comment], [2014], [2014_comment], [2013], [2013_comment])
) piv;

Zobacz SQL Fiddle with Demo .

Po opanowaniu logiki możesz łatwo przekonwertować to na dynamiczny SQL.

-- get list of the columns
DECLARE @cols AS NVARCHAR(MAX),
    @query  AS NVARCHAR(MAX)

select @cols = STUFF((SELECT  ',' + QUOTENAME(col) 
                    from #srcData
                    cross apply
                    (
                        select right(upg_date, 4), right(upg_date, 4), 2 union all
                        select right(upg_date, 4), right(upg_date, 4)+'_comment', 1
                    ) c (yr, col, so)
                    group by yr, col, so
                    order by yr desc, so desc
            FOR XML PATH(''), TYPE
            ).value('.', 'NVARCHAR(MAX)') 
        ,1,1,'')

set @query 
    = 'SELECT ' + @cols + ' 
        from 
        (
            select c.col, val
            from
            (
                select distinct 
                    Yr =  right(s1.upg_date, 4),
                    cnt = count(*) over(partition by right(s1.upg_date, 4)),
                    fullcomment 
                            = STUFF((
                                      SELECT ''; '' + s2.comment 
                                      FROM #srcData s2
                                      WHERE right(s1.upg_date, 4) = right(s2.upg_date, 4)
                                      FOR XML PATH(''''), TYPE).value(''.[1]'', ''nvarchar(max)''), 1, 2, '''') 
                from #srcData s1
            ) d
            cross apply
            (
                values 
                    (Yr, cast(cnt as nvarchar(50))),
                    (Yr+''_comment'', fullcomment)
            ) c (col, val)  
        ) x
        pivot 
        (
           max(val)
           for col in (' + @cols + ')
        ) p '

exec sp_executesql @query;

Zobacz SQL Fiddle with Demo . Obie wersje dają wynik:

| 2015 | 2015_comment | 2014 |                      2014_comment | 2013 |      2013_comment |
|------|--------------|------|-----------------------------------|------|-------------------|
|    1 |       2.13.0 |    2 |  1.16.13 - 2.7.0;  2.8.0 - 2.12.0 |    1 |  1.6.13 - 1.16.13 |

5

Dodanie wyjaśnienia i skrzypce: http://sqlfiddle.com/#!6/c92b2/5 .

Zapytanie poniżej:
1. wykorzystuje podkwerendę, aby wybrać wersje minimalną i maksymalną według daty (wartości minimalne i maksymalne są stosowane do liczb całkowitych, aby zagwarantować, że na przykład 6 <16)
2. Następnie wybiera rok (do grupowania później), datę (do zamówienie) oraz wersje min - max

SELECT LEFT(UPG_DATE, 4) AS Year
    , UPG_DATE
    , CONVERT(varchar(1), MIN_VER/1000000) + '.' + CONVERT(varchar(2), (MIN_VER/1000 - (MIN_VER/1000000)*1000)) + '.' + CONVERT(varchar(2), MIN_VER%1000)
        + ' - ' + CONVERT(varchar(1), MAX_VER/1000000) + '.' + CONVERT(varchar(2), (MAX_VER/1000 - (MAX_VER/1000000)*1000)) + '.' + CONVERT(varchar(2), MAX_VER%1000) AS Versions
INTO #Versions
FROM (
    SELECT CONVERT(varchar(10), SCHEMA_VER_DATE, 112) as UPG_DATE
        , MIN(SCHEMA_VER_MAJOR*1000000 + SCHEMA_VER_MINOR*1000 + SCHEMA_VER_SUB) AS MIN_VER
        , MAX(SCHEMA_VER_MAJOR*1000000 + SCHEMA_VER_MINOR*1000 + SCHEMA_VER_SUB) AS MAX_VER
    FROM audit_schema_version
    WHERE SCHEMA_VER_REMARK like 'Stored procedure build'
    GROUP BY CONVERT(varchar(10), SCHEMA_VER_DATE, 112)
) Versions;

Następnie, ponieważ każda kolumna zostanie powtórzona (rok i rok_KOMENT), do identyfikacji danych wybierane są dwie kolumny. Liczba dat jest zliczana, aby poznać liczbę aktualizacji, a wersje są pogrupowane według roku, upychając, aby uzyskać wszystko w jednym wierszu. To daje nam końcowy stół, który zostanie wykorzystany do obrotu.

SELECT Year, Year + '_COMMENT' as Year_COMMENT
    , COUNT(Year) AS Upgrades
    , STUFF((SELECT ' ; ' + SUB.Versions
                FROM #Versions SUB
                WHERE SUB.Year = V.Year
                ORDER BY UPG_DATE ASC
                FOR XML PATH(''), TYPE
                ).value('.', 'NVARCHAR(2000)')
            ,1,3,'') Versions
INTO #GroupedResults
FROM #Versions V
GROUP BY Year

SELECT * FROM #GroupedResults

Oto wyniki:

| Year | Year_COMMENT | Upgrades | Versions                         |
|------|--------------|----------|----------------------------------|
| 2013 | 2013_COMMENT | 1        | 1.6.13 - 1.16.13                 |
| 2014 | 2014_COMMENT | 2        | 1.16.13 - 2.7.0 ; 2.8.0 - 2.12.0 |
| 2015 | 2015_COMMENT | 1        | 2.13.0 - 2.13.0                  |

Następnie zmienna jest wypełniana kolumnami, uporządkowanymi tak, jak chcemy je wyświetlić:

DECLARE @cols VARCHAR(1000),
    @finalQuery VARCHAR(2000)

SELECT @cols = STUFF((SELECT ',' + QUOTENAME(YEAR) + ',' + QUOTENAME(YEAR + '_COMMENT')
                    FROM #GroupedResults
                    GROUP BY YEAR
                    ORDER BY YEAR DESC
                    FOR XML PATH(''), TYPE
                    ).value('.', 'NVARCHAR(2000)')
    ,1,1,'')

Na koniec w poniższym zapytaniu zastosowano krzyżowanie, więc otrzymujemy:
1. Kolumnę wypełnioną wartościami Year i Year_COMMENT
2. Kolumnę wartości wypełnioną liczbą aktualizacji, w wierszach odpowiadających wartościom lat i wersji, w wiersze odpowiadające elementom Year_COMMENTS Obroty
są używane w dwóch wynikowych kolumnach, podając nam wartości (liczba aktualizacji na przemian z wersjami) w kolumnie (lata na przemian z Year_COMMENTs)

set @finalQuery = N'SELECT ' + @cols + N' from 
             (
                select col, value
                from #GroupedResults
                cross apply
                (
                    SELECT CAST(Upgrades AS VARCHAR(200)), Year
                    UNION ALL
                    SELECT CAST(Versions AS VARCHAR(200)), Year_COMMENT
                ) c (value, col)
            ) x
            pivot 
            (
                Min(value)
                for col in (' + @cols + N')
            ) p1
            ; '

EXEC (@finalQuery);

DROP TABLE #Versions;
DROP TABLE #GroupedResults;

Zwraca to następujące wyniki:

| 2015 | 2015_COMMENT    | 2014 | 2014_COMMENT                     | 2013 | 2013_COMMENT     |
|------|-----------------|------|----------------------------------|------|------------------|
| 1    | 2.13.0 - 2.13.0 | 2    | 1.16.13 - 2.7.0 ; 2.8.0 - 2.12.0 | 1    | 1.6.13 - 1.16.13 |
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.