Sugeruje to, że wszystkie przykłady treningu mają ustaloną długość sekwencji, a mianowicie timesteps
.
Nie jest to do końca poprawne, ponieważ ten wymiar może być None
, tzn. O zmiennej długości. W ramach jednej partii musisz mieć taką samą liczbę kroków czasowych (zwykle w tym miejscu widać 0-padding i maskowanie). Ale między partiami nie ma takich ograniczeń. Podczas wnioskowania możesz mieć dowolną długość.
Przykładowy kod, który tworzy losowe partie danych treningowych.
from keras.models import Sequential
from keras.layers import LSTM, Dense, TimeDistributed
from keras.utils import to_categorical
import numpy as np
model = Sequential()
model.add(LSTM(32, return_sequences=True, input_shape=(None, 5)))
model.add(LSTM(8, return_sequences=True))
model.add(TimeDistributed(Dense(2, activation='sigmoid')))
print(model.summary(90))
model.compile(loss='categorical_crossentropy',
optimizer='adam')
def train_generator():
while True:
sequence_length = np.random.randint(10, 100)
x_train = np.random.random((1000, sequence_length, 5))
# y_train will depend on past 5 timesteps of x
y_train = x_train[:, :, 0]
for i in range(1, 5):
y_train[:, i:] += x_train[:, :-i, i]
y_train = to_categorical(y_train > 2.5)
yield x_train, y_train
model.fit_generator(train_generator(), steps_per_epoch=30, epochs=10, verbose=1)
I to właśnie drukuje. Uwaga: kształty wyjściowe (None, None, x)
wskazują zmienny rozmiar partii i zmienny rozmiar taktowania.
__________________________________________________________________________________________
Layer (type) Output Shape Param #
==========================================================================================
lstm_1 (LSTM) (None, None, 32) 4864
__________________________________________________________________________________________
lstm_2 (LSTM) (None, None, 8) 1312
__________________________________________________________________________________________
time_distributed_1 (TimeDistributed) (None, None, 2) 18
==========================================================================================
Total params: 6,194
Trainable params: 6,194
Non-trainable params: 0
__________________________________________________________________________________________
Epoch 1/10
30/30 [==============================] - 6s 201ms/step - loss: 0.6913
Epoch 2/10
30/30 [==============================] - 4s 137ms/step - loss: 0.6738
...
Epoch 9/10
30/30 [==============================] - 4s 136ms/step - loss: 0.1643
Epoch 10/10
30/30 [==============================] - 4s 142ms/step - loss: 0.1441
Masking
warstwę, aby ignorować