Biorąc pod uwagę grupę permutacji na [ n ] = { 1 , ⋯ , n } i dwa wektory u , v ∈ Γ n, gdzie Γ jest skończonym alfabetem, co nie jest tu całkiem istotne, pytanie brzmi, czy istnieje jakieś π ∈ G taki, że π ( u ) = v gdzie π ( u ) oznacza zastosowanie permutacji π na u w oczekiwany sposób.
Załóżmy ponadto, że jest dane wejściowe przez skończony zbiór S generatorów. Jaka jest złożoność problemu? W szczególności, czy jest to w NP?