Mam problem i myślę, że jest to trudny NP, ale nie mogę tego udowodnić.
Oto wykres warstw, w którym warstwa 0 jest najwyższą warstwą, a warstwa L najniższą.
istnieje pewna ukierunkowana krawędź między warstwami, gdzie krawędź (A, B) wskazuje, że węzeł A może [pokrywać] węzeł B. A kiedy A może obejmować B, każdy węzeł na dowolnej ścieżce od A do B może obejmować B, B może obejmować samo.
Wreszcie nadchodzi zestaw węzła S. Muszę wybrać inny zestaw węzła ANS i upewnić się, że dla każdego węzła q w S istnieje węzeł pw ANS, a p obejmuje q.
Każdy węzeł wiąże się z pewnym kosztem i muszę zminimalizować całkowity koszt zestawu ANS.
Czy to trudny NP? Tak mi się wydaje, ale nie mogę tego udowodnić.
Czy mógłbyś mi pomóc?
Dziękuję Ci bardzo.