<>(()){<>((([][][][][])<(((({}){})(({})({}))[])({}(({})({}({})({}{}(<>)))))[])>{()<{}>}{})<{{}}{}>())}{}<>(<(({()(((<>))<>)}{}{<({}(([][][])((({})({}))[]{})){})>((){[]<({}{})((){[]<({}{}<>((({})({})){}{}){})(<>)>}{}){{}{}<>(<({}{}())>)(<>)}>}{}){(<{}{}{}((<>))<>>)}{}}<>)<{({}[]<({}<>)<>{(<{}>)<>{<>({}[])}{}<>({}<>)(<>)}{}>)}{}<>>)>)<>{(({}[])(){(<{}>)<><(({})[])>[][][][]{()()()()(<{}>)}{}<>}{}<>)<>}<>{}{(({})<({()<<>({}<>)>}{})>([]))((){[](<(({}()()(<>))()()()){(<{}>)<>}>)}{}<>){{}((){[]<({}())((){[]<({}())((){[]<({}())((){[]<({}())((){[]<({}())((){[]<({}())((){[](<{}<>{({}<>)<>}{}(({}))({<{}({}<>)<>>{}(<<>({}[]<>)>)}<><{({}<>)<>}>{})>)}{}){{}{}(<([])>)}>}{}){{}<>{({}<>)<>}{}((({})())<{({}[]<({}<>)<>>)}>{}){({}[]<><({}<><({()<({}[]<({}<>)<>>)>}{}<>)><>)<>({()<({}[]<({}<>)<>>)>}{}<>)>)}<>(<{({}<>)<>}>)}>}{}){{}{}(<(())>)}>}{}){(<{}{}>)<>{({}<>)<>}{}(({}))({<{}({}<>)<>>({})(<<>({}<>)>)}<><{({}<>)<>}>){{}([][][])<>(((<{}>)<>))}}>}{}){{}(<([{}])>)}>}{}){{}((<{}>))}>}{}){{}(({})(<()>)<<>{({}<>)<>}{}({}()<>)<>>)<>(<({}<>)>)<>{({}<>)<>}}{}(<({}<({}<>)<>>{})<>({}<>)>)<>(<({}())>)}{}({}<{({}[]<({}<>)<>>)}{}>){((({}[]<>){(<{}({}<>)>)}{}())<{({}()<({}<>)<>(({})[])>{[][](<{}>)}{})}{}>()){{}(<>)}}{}}{}{({}[]<[{}]>)}{}{({}[]<{}>)}{}
Wypróbuj online!
+4 bajty od naprawienia błędu z warunkiem w {...}
monadzie i -36 bajtów z różnych pól golfowych.
1238 bajtów kodu, +1 bajt dla -a
flagi (którą można połączyć z flagą języka).
To teraz ocenia się {...}
jako zero według specyfikacji wyzwania. Zwróć uwagę, że sam Brain-Flak został oceniony {...}
jako suma wszystkich przebiegów od poprawki 7 maja 2016 dwa dni przed opublikowaniem tego wyzwania.
Poniższy kod poprawnie interpretuje Brain-Flak Classic {...}
jako sumę wszystkich przebiegów. Jedyną różnicą między dwoma tłumaczami jest umieszczenie jednego {}
nilada.
<>(()){<>((([][][][][])<(((({}){})(({})({}))[])({}(({})({}({})({}{}(<>)))))[])>{()<{}>}{})<{{}}{}>())}{}<>(<(({()(((<>))<>)}{}{<({}(([][][])((({})({}))[]{})){})>((){[]<({}{})((){[]<({}{}<>((({})({})){}{}){})(<>)>}{}){{}{}<>(<({}{}())>)(<>)}>}{}){(<{}{}{}((<>))<>>)}{}}<>)<{({}[]<({}<>)<>{(<{}>)<>{<>({}[])}{}<>({}<>)(<>)}{}>)}{}<>>)>)<>{(({}[])(){(<{}>)<><(({})[])>[][][][]{()()()()(<{}>)}{}<>}{}<>)<>}<>{}{(({})<({()<<>({}<>)>}{})>([]))((){[](<(({}()()(<>))()()()){(<{}>)<>}>)}{}<>){{}((){[]<({}())((){[]<({}())((){[]<({}())((){[]<({}())((){[]<({}())((){[]<({}())((){[](<{}<>{({}<>)<>}{}(({}))({<{}({}<>)<>>{}(<<>({}[]<>)>)}<><{({}<>)<>}>{})>)}{}){{}{}(<([])>)}>}{}){{}<>{({}<>)<>}{}((({})())<{({}[]<({}<>)<>>)}>{}){({}[]<><({}<><({()<({}[]<({}<>)<>>)>}{}<>)><>)<>({()<({}[]<({}<>)<>>)>}{}<>)>)}<>(<{({}<>)<>}>)}>}{}){{}{}(<(())>)}>}{}){(<{}>)<>{({}<>)<>}{}(({}))({<{}({}<>)<>>({})(<<>({}<>)>)}<><{({}<>)<>}>{}){{}([][][])<>(((<{}>)<>))}}>}{}){{}(<([{}])>)}>}{}){{}((<{}>))}>}{}){{}(({})(<()>)<<>{({}<>)<>}{}({}()<>)<>>)<>(<({}<>)>)<>{({}<>)<>}}{}(<({}<({}<>)<>>{})<>({}<>)>)<>(<({}())>)}{}({}<{({}[]<({}<>)<>>)}{}>){((({}[]<>){(<{}({}<>)>)}{}())<{({}()<({}<>)<>(({})[])>{[][](<{}>)}{})}{}>()){{}(<>)}}{}}{}{({}[]<[{}]>)}{}{({}[]<{}>)}{}
Wypróbuj online!
Dane wejściowe (do dowolnego interpretera) to program Brain-Flak Classic do interpretacji, następnie nowa linia, a następnie rozdzielona spacjami lista liczb całkowitych. Na wejściu nie jest przeprowadzana walidacja. Nowa linia jest wymagana, nawet jeśli program lub dane wejściowe są puste.
Pierwszym krokiem jest parsowanie wszystkich danych wejściowych, zaczynając od nawiasów:
# Move to right stack, and push 1 to allow loop to start
<>(())
{
# While keeping -5 on third stack:
<>((([][][][][])<
# Pop bracket or newline k from left stack, and push 0, k-10, k-40, k-60, k-91, k-123 on right stack
(((({}){})(({})({}))[])({}(({})({}({})({}{}(<>)))))[])
# Search this list for a zero, and push the number of nonzero entries popped minus 5
# (thus replacing the 0 if it was destroyed)
>{()<{}>}{})
# Remove rest of list, and push the same number plus 1
# Result is -4 for {, -3 for [, -2 for <, -1 for (, 0 for newline, or 1 for everything else (assumed closing bracket)
<{{}}{}>())
# Repeat until newline found
}{}<>
Następnie liczby całkowite są analizowane. Zwykle nie jest to wymagane, ale dane wejściowe zostały pobrane jako ASCII. Ma to jednak srebrną podszewkę: wprowadzanie tekstu pozwala nam określić wysokość stosu, co upraszcza rzeczy, gdy nie mamy dostępu do wysokości stosu nilad.
Liczby całkowite są parsowane na dwie liczby na drugim stosie: jeden dla wartości bezwzględnej i jeden dla znaku. Są one następnie przenoszone z powrotem na pierwszy stos.
Zinterpretowane stosy są przechowywane poniżej kodu na pierwszym stosie w następującej kolejności: bieżąca wysokość stosu, bieżąca wysokość stosu, inna wysokość stosu, inny stos. Wartość 0 dla drugiej wysokości stosu nie musi być w tym momencie wypychana, ponieważ będzie to domyślna wartość zero przy pierwszym czytaniu.
(<((
# If stack nonempty, register first stack entry.
{()(((<>))<>)}{}
# For each byte k of input:
{
# Push -3, -13, and k-32
<({}(([][][])((({})({}))[]{})){})>
# Evaluate to 1 if space
# If not space (32):
((){[]<
# If not minus (45):
({}{})((){[]<
# Replace top of right stack (n) with 10*n + (k-48)
({}{}<>((({})({})){}{}){})(<>)
# Else (i.e., if minus):
>}{}){
# Remove excess "else" entry and -3
{}{}
# Set sign to negative (and destroy magnitude that shouldn't even be there yet)
<>(<({}{}())>)(<>)}
# Else (i.e., if space):
>}{}){
# Remove working data for byte, and push two more 0s onto right stack
(<{}{}{}((<>))<>>)
# Push number of integers found
}{}}<>)
# For each integer:
<{({}[]<
# Move magnitude back to left stack
({}<>)<>
# If sign is negative, negate
{(<{}>)<>{<>({}[])}{}<>({}<>)(<>)}{}
>)}{}
# Push stack height onto stack
<>>)
# Push 0
>)
Reprezentacja kodu jest teraz przenoszona z powrotem na lewy stos. Aby ułatwić później, odejmujemy 4 od nawiasów otwierających niladów, aby każda operacja miała unikalną liczbę całkowitą od -1 do -8.
# For each bracket in the code:
<>{
# Push k-1 and evaluate to k
(({}[])()
# If not closing bracket:
{
# Check next bracket (previously checked, since we started at the end here)
(<{}>)<><(({})[])>
# Subtract 4 if next bracket is closing bracket
# Inverting this condition would save 8 bytes here, but cost 12 bytes later.
[][][][]{()()()()(<{}>)}{}
<>}{}
# Push result onto left stack
<>)
<>}<>{}
Główną częścią programu jest interpretacja instrukcji. Na początku każdej iteracji głównej pętli bieżąca instrukcja znajduje się na górze lewego stosu, wszystko po nim na tym samym stosie i wszystko przed nim na właściwym stosie. Zazwyczaj wyobrażam to sobie jako książkę otwartą na określoną stronę.
{
(
# Get current instruction
({})
# Move all code to left stack, and track the current position in code
<({()<<>({}<>)>}{})>
# Push -1, signifying that the code will move forward to just before a matching }.
# In most cases, this will become 0 (do nothing special) before it is acted upon
([])
# Push instruction minus 1
)
# If opening bracket:
((){[](<
# Push instruction+1 and instruction+4
(({}()()(<>))()()())
# If instruction+4 is nonzero (not loop monad), replace the earlier -1 with 0 to cancel forward seek
# This would be clearer as {(<{}>)<>(<{}>)<>}, but that would be unnecessarily verbose
{(<{}>)<>}
# Else (i.e., if closing bracket):
>)}{}<>){
# If closing bracket, parse command
# Post-condition for all: if not moving to {, pop two and push evaluation, 0.
# (For nilads, can assume second from top is 0.)
# If moving to {, pop one, push -3, 0, 0.
# Seven nested if/else statements, corresponding to eight possible instruction.
# The "else" statements end with 0 already on the stack, so no need to push a 0 except in the innermost if.
# Each one beyond the first increments the instruction by 1 to compare the result with 0
# Each instruction will pop the instruction, leaving only its evaluation (with a 0 on top).
{}((){[]<
({}())((){[]<
({}())((){[]<
({}())((){[]<
({}())((){[]<
({}())((){[]<
({}())((){[](<
# -7: pop
# Pop instruction to reveal existing 0 evaluation
{}
# Move code out of the way to access stack
<>{({}<>)<>}{}
# Duplicate stack height (only useful if stack height is zero)
(({}))
(
# If stack height nonzero
{
# Save stack height on second stack
<{}({}<>)<>>
# Pop stack
{}
# Move stack height back and subtract 1
(<<>({}[]<>)>)
}
# Move code back to normal position
<><{({}<>)<>}>{}
# Evaluate as popped entry (0 if nothing popped)
)
# (else)
>)}{}){
# -6: -1 nilad
# Just evaluate as -1
{}{}(<([])>)
# (else)
}>}{}){
# -5: swap nilad
# Move code out of the way to access stack
{}<>{({}<>)<>}{}
# Number of integers to move: stack height + 1 (namely, the stack height and every entry in the stack)
((({})())
# Move to second stack
<{({}[]<({}<>)<>>)}>{}
# Do (stack height + 1) times again
){({}[]<><
# Get stack element
({}<><
# Move alternate (interpreted) stack to second (real) stack, and push length on top of it
({()<({}[]<({}<>)<>>)>}{}<>)
# Push current stack element below alternate stack
><>)
# Move alternate stack back above newly pushed element
<>({()<({}[]<({}<>)<>>)>}{}<>)
>)}
# Move code back to normal position
<>(<{({}<>)<>}>)
# (else)
}>}{}){
# -4: 1
# Just evaluate to 1
{}{}(<(())>)
# (else)
}>}{}){
# -3: loop
# Create zero on stack while keeping existing evaluation
# This becomes (<{}{}>) in the version that meets the challenge spec
(<{}>)
# Move code out of the way to access stack
<>{({}<>)<>}{}
# Duplicate stack height
(({}))
(
# If stack height nonzero
{
# Save stack height on second stack
<{}({}<>)<>>
# Peek at top of stack
({})
# Move stack height back
(<<>({}<>)>)
}
# Move code back to normal position
<><{({}<>)<>}>
# Look at peeked entry
# Remove the {} in the version meeting the challenge spec
{})
# If peeked entry is nonzero
{
# Replace -3 instruction on third stack
{}([][][])
# Replace loop indicator to 0 (to be incremented later to 1)
<>(((<{}>)
# Create dummy third stack entry to pop
<>))
}
# (else)
}>}{}){
# -2: print
# Just print evaluation without modifying it
{}(<([{}])>)
# (else)
}>}{}){
# -1: evaluate as zero
# Just change evaluation to 0
{}((<{}>))
# else
}>}{}){
# 0: push
# Get current evaluation (without modifying it)
{}(({})
# Create zero on stack as barrier
(<()>)
# Move code out of the way to access stack
<<>{({}<>)<>}{}
# Increment stack height and save on other stack
({}()<>)<>
# Push evaluation
>)
# Move stack height back (and push zero)
<>(<({}<>)>)
# Move code back to normal position
<>{({}<>)<>}
}{}
# Update third stack by adding evaluation to previous entry's evaluation
# Previous entry's instruction is saved temporarily on left stack
(<({}<({}<>)<>>{})<>({}<>)>)
# Increment loop indicator
# If instruction was loop monad and top of stack was nonzero, this increments 0 to 1 (search backward)
# Otherwise, this increments -1 to 0 (do nothing)
<>(<({}())>)
}{}
# While holding onto loop indicator
({}<
# Go to immediately after executed symbol
{({}[]<({}<>)<>>)}{}
>)
# If looping behavior:
{
# Switch stack and check if searching forward
((({}[]<>)
# If so:
{
# Move just-executed { back to left stack, and move with it
(<{}({}<>)>)
}{}
# Either way, we are currently looking at the just-executed bracket.
# In addition, the position we wish to move to is on the current stack.
# Push unmodified loop indicator as initial value in search
())
# While value is nonzero:
<{
# Add 1
({}()
# Move current instruction to other stack
<({}<>)<>
# Check whether next instruction is closing bracket
(({})[])>
# If opening bracket, subtract 2 from value
{[][](<{}>)}{}
)
}{}>
# If searching backward, move back to left stack
()){{}(<>)}
}{}
}
Po wyjściu z głównej pętli cały kod znajduje się na odpowiednim stosie. Jedyne rzeczy na lewym stosie to zero i dwa interpretowane stosy. Uzyskanie prawidłowego wyniku jest prostą sprawą.
# Pop the zero
{}
# Output current stack
{({}[]<[{}]>)}{}
# Discard other stack to avoid implicit printing
{({}[]<{}>)}{}