Wskazówki do gry w golfa w J.


33

GolfScript zbyt często zdobywa swoją własną drogę i uważam, że repozytorium przydatnych wskazówek dotyczących gry w golfa w J może pomóc w walce ze złym imperium. Jakie masz wskazówki na temat skrócenia tego i tak krótkiego języka?

Dla tych, którzy chcą nauczyć się J, oczywistym miejscem do rozpoczęcia jest strona jsoftware, a zwłaszcza słownictwo , nauka J przewodnik i J dla programistów C przewodnikiem.


1
Jest coś śmiesznego GolfScript gets its own way far too oftenw czytaniu w 2019 roku.
Niepowiązany ciąg

Odpowiedzi:


14

Istnieje kilka subtelności polegających na wyciskaniu kilku ostatnich znaków w J. Dla tego, załóżmy, że każda wielka litera jest prymitywnym czasownikiem (tj. Usuwam spacje, które w innym przypadku byłyby wymagane do rozgraniczenia nazw).

  • Gdy masz pociąg dzieje, i trzeba zastosować funkcję szczycie innego trakcie kopiowania, ([:FLGR)i (LF@:GR)mają taką samą liczbę znaków, ale (LF@GR)ratuje jedno. Jeśli ramka G jest większa lub równa rangi monad F, jest to poprawna transformacja. W szczególności wszystkie pociągi mają nieskończoną rangę, podobnie jak , ,. ,: ~. /: \: [ ]większość zastosowań #i |..

  • Jeśli musisz wybrać ciągi z listy, a ciągi te nie mają spacji, użyj >i{ab`cd`ef. Jest brudny, ale zapisuje znaki dla każdego nowego ciągu, z którym masz do czynienia, chyba że ciągniesz tylko pojedyncze znaki, a nawet wtedy lista znaków musi mieć długość 4, aby być krótsza. To, co się dzieje, jest takie, że niezdefiniowane nazwy są traktowane jako odniesienia do czasowników, a kiedy weźmiesz gerunds tych czasowników, otrzymujesz zapakowany ciąg nazwy. Nazwy, które są już zdefiniowane jako mające typ rzeczownik, przysłówek lub koniunkcja, nie mogą być używane w ten sposób, ponieważ te nazwy są rozpoznawane wcześniej, zanim będą `mogły na nich zostać.

  • Jeśli masz szczęście mieć wyrażenie do pracy, a nie tylko czasownik milczący, prawie zawsze warto przypisać dowolne bity, których ponownie używasz, do zmiennych, niezależnie od tego, czy są to rzeczowniki, czasowniki czy przysłówki. Pareny czasami się zwrócą, dopasowując się do miejsca, w którym wcześniej były spacje, a większość takich definicji jest tego warta, jeśli zostaną ponownie użyte jeszcze raz.

  • Koniunkcje jak (FGH)^:(u`v`w)można przepisać u`v`w(FGH^:). Działa to dla dowolnej długości pociągu, nawet 1, chociaż zapisujesz wszystko tylko wtedy, gdy ta sztuczka usuwa pareny z właściwego argumentu. Ta sztuczka działa tylko wtedy, gdy wstępnie załadujesz lewy operand. (Nie masz pojęcia, co się właśnie stało? Sprawdź „przysłówki ukryte” i przestudiuj sekcję Przetwarzanie i wykonywanie w słowniku J).

  • Nie używaj a.&i., używaj u:! {&a.i3&u: są równoważne pod względem długości, a te pierwsze mogą być bardziej przydatne w koniunkcji (w zależności od koniunkcji).

  • Rzeczy takie jak (2%~F)i (F%2:)mają równoważną długość. Jest to przydatne, ponieważ czasami, w zależności od tego, jak wygląda reszta twojego pociągu, możesz go zrestrukturyzować za pomocą @sztuczek, jak napisano w pierwszym punkcie, aby uratować desperackie postacie. (I oczywiście, jeśli Fjest, ]a pociąg to monada, użycie %&2ratuje char, duh.)

  • Pociągi przypominające haczyki z czasownikiem ]lub [z najbardziej na lewo, np (]FGH).

    • ]pozwala rozbić dynamiczną aplikację i użyć tylko właściwego argumentu. (Zamień w lewo za pomocą(]FGH)~ , za co najmniej 1 postacią, może więcej.) Oszczędza char (FGH)@]i jest bardzo przydatny w gerundach!
    • [w haku zastosowanym monadycznie pozwala zrobić coś dla efektów ubocznych po prawej stronie, a następnie zwrócić argument ponownie. Najczęstszym zastosowaniem jest 1!:2, prawdopodobnie z formatowaniem śmieci.
  • I / O jest do bani. Przyspiesz ten proces, tworząc pętle ze wszystkiego, co możesz. 1!:1ma rangę 0i oba 1!:2 3mają _ 0na przykład rangę , więc wykorzystaj to, tworząc tablice 1s i przejeżdżając 1!:1bezpośrednio nad nimi. Zauważ, że ".ma również rangę 1, więc zazwyczaj możesz po prostu umieścić ją bezpośrednio po niej 1!:1i nie musisz dołączać jej za pośrednictwem @ani rangi szantażystów.

  • Znalezienie miejsca na umieszczenie tego nie jest łatwe, ale ::może być przydatne.

    • ::]^:_jest szczególnie potężną kombinacją, na przykład, która pozwala ci zrobić coś niebezpiecznego, dopóki nie będziesz już w stanie tego zrobić. (Z zastrzeżeniem zwykłych ^:_ostrzeżeń -as-a-loop.)

    • Pozwala to również korzystać {z list, które nie mają pożądanego indeksu, ponieważ powoduje to błąd domeny, gdy to nastąpi. Przydatne jest np. Wzięcie nagłówka listy tylko wtedy, gdy istnieje (spróbuj użyć, ::]aby zwrócić pustą listę lub ::_1:kod błędu itd.).

  • ]`($:@u)@.vzwykle może być krótszy niż u^:v^:_, szczególnie w definicjach, ui vmożna się nim bawić. Podobny przypadek zachodzi dla warunkowego podobnego u^:(1-v)vs. ]`u@.v. Rozważ swoje opcje, szczególnie gdy masz dużo nazwanych czasowników. Jest również trochę bardziej elastyczny, ale pamiętaj, że jeśli używasz $:, istnieje głębokość rekurencji, z którą łatwo się zderzyć. (Zwykle coś w rodzaju 1800 iteracji?)


The adverse trick is really cool.
FUZxxl

"save some desperate characters" When you're studying lit, everything looks like a transferred epithet! :)
Soham Chowdhury

1
"using %&2 saves a char, duh." And -: saves another!
Lynn

11

The most important thing when golfing in J is to not only understand the problem, but to reduce the problem to a series of array transformations. You need to understand this way of thinking to have any success with J code.

For example, a recent challenge asked to solve the largest subarray problem. The stock algorithm to solve this problem is Kadane's algorithm has the following informal description:

Go through the array and at each position and find the sum of the largest subarray ending here, which is the maximum of 0 or the value at the current index plus the sum of the largest subarray ending at the previous position. Compute the maximum of these subarrays as you go to find the largest subarray in the entire array.

A translation into imperative code is straightforward:

  1. let A be the input array.
  2. hmi ← 0.
  3. if i ≥ len(A) return m.
  4. h ← max(0, h + A[i]).
  5. m ← max(m, h).
  6. ii + 1.
  7. goto 3.

This algorithms seems complicated for J at a glance as there is an explicit loop that doesn't look like a reduction at first. If you realize what the algorithm is doing you can untangle the individual steps and see that it actually performs two simple array operations:

  1. Scan through the array to compute the lengths of the largest subarrays ending at each index.
  2. Reduce these lengths with the max function to find the maximum.

Now these two steps are very easy to implement in J. Here is a translation:

  1. (0 >. +)/\. y , 0 – This step operates from the other end of the array to better fit J's paradigm. 0 >. + is tacit for 0 >. x + y.
  2. >./ y

Put together, we get a very terse implementation of the algorithm:

>./ (0 >. +)/\. y , 0

If you learn this way of approaching the implementation of algorithms, your solutions will be as terse as this code.

Here are some tricks I accumulated over time. This list will be expanded as I get more knowledge in J golfing.

  • Learn the dictionary. It contains a lot of really obscure verbs that don't make any sense until you see how useful they are. For instance, monadic = is strange at first but is very useful in ASCII art challenges.
  • Use dyadic & in tacit contexts when you want a power conjunction. The vocabulary suggests u@[&0 as a tacit replacement to 4 : 'u^:x y and so do I.
  • In many cases you can avoid a [: or @: in a sequence like u@v by choosing a variant of u that has a left argument. For instance, to drop the first item of the result of v, use 1}.v instead of [:}.v if }.@v isn't possible for some reason.
  • ] v is often shorter than v@] if you want to use monadic v in a dyadic context. This comes in useful especially when v is a long train of verbs.
  • Sometimes you can write m (n v w) y instead of (n v m&w) y. This may make it possible to avoid spaces and parentheses.
  • #\ instead of >:@i.@#.
  • u &. v is useful when v has an obverse. When not, you might want to use [: vinv u & v or u & (v :. vinv) instead.
  • Understand rank and how to use it. Try to fiddle around with the rank conjunction until you get something that fits. It helps understanding how rank influences your code.
  • ^:_ is extremely useful for algorithms where you want to reach convergence, like a flood-fill or simulations.
  • Know your standard library. It contains very useful functions that save you tons of characters.
  • The copulæ =. and =: can be embedded anywhere in a phrase. Use this to make one-liners where tacit notation isn't enough.
  • Use monadic , instead of multiple reductions when reducing multi-dimensional arrays.
  • Understand what phrases are supported by special code when the challenge imposes runtime boundaries. Some useful things operate in O(n) instead of O(n2) counter-intuitively.
  • Boxes are useful for trees.

Is J smart enough to run your max subarray solution in O(n) by caching re-used calculations, or will it do the straightforward thing and run it in O(n^2)?
Jonah

@Jonah I think it runs in quadratic time.
FUZxxl

10

Be wary of using loops.

While J has looping structures (for. do. end., while. do. end. and variations), if you find yourself using them there's a possibility that your algorithm is not playing to J's golfing strengths and that there are character savings to be made.

^: the power conjunction is your friend. To execute a verb x times:

verb^:x

If you need the result of each iteration in a list:

verb^:(i.x)

You can also use ^: to execute a verb conditionally:

  +:^:(3<])"0[ 1 2 3 4 5 6
1 2 3 8 10 12

Double +: if ^: the item is greater than 3 3<] (the "0 changes the rank of the verb so it works an item at a time).


Boxed values act like the (i.x) example, i.e. f^:(<x) is equivalent to f^:(i.x).
FireFly

9

Input

1!:1[1 will take one line of input terminated by pressing the enter key.

1!:1[3 will take a number of lines of input (terminated by Ctrl-D on my Mac, Ctrl-C on Windows).

If you're trying to input numbers, using ". will evaluate the string and return a list of numbers ready to be manipulated. If you're taking in one number but need to operate on the digits individually, ".,. (thanks to Jan Dvorak's comment for this) or "."0 will split the string into separate digits:

   "."0[1!:1[1
12345
1 2 3 4 5

   ".,.1!:1[1
12345
1 2 3 4 5

If you're reading in strings, the shortest way to get a boxed list of separate strings is to use ;:. This works best for space separated strings:

   ;:1!:1[1
hello world
┌─────┬─────┐
│hello│world│
└─────┴─────┘

Out of curiosity, (I've only played with J a little) what would 1!:1[2 work out as (if anything)?
Gaffi

From what I can gather on the 1!: page (I'm no J expert) 2 is the screen, so input from screen doesn't make much sense.
Gareth

Thanks for the link. From there, it actually looks like 2 is not valid? I don't have my J computer on me to try it out at the moment. Where I see 2, just below the notes about 1!:1, it is for 1!:2.
Gaffi

@Gaffi The file numbers for input and output seem to be sequential, so I'm guessing that those are fixed and that 2, 4 and 5 only appear under output because it doesn't make any sense to try and input from them. Same goes the other way around for 1 and 3.
Gareth

Since ". is rank 1-x-x and ,. always produces a 2D array, ".,' ',. (stitch with space, ravel and evaluate; 8 characters) can be replaced with just ".,. (ravel items and evaluate; 4 characters).
John Dvorak

6

Using iteration to compute sequences

Typically, solving an OEIS sequence challenge will require using one of the formulas given on its page. Some of these adapt well for J, and others not so much. Recursive formulas are straight-forward, however, iteration might not be simple. A pattern I've begun to use is

(s(]f)^:[~]) n
          ]  Gets n
 s           The first value in the sequence
         ~   Commute the argument order, n is LHS and s is RHS
        [    Gets n
      ^:     Nest n times with an initial argument s
  (]f)         Compute f s
             Returns (f^n) s

where s is the first value in the sequence, f is a verb that will compute the next term given the previous term, and n is the zero-based index of the term you want to compute. This method relies on the fact that when computing the power of a dyad, the LHS is bound to the dyad to form a new monad, and that monad is nested on the initial value. The dyad given to the power adverb is a hook where (]f) is given the index n on the LHS and the value of a term in the sequence s. The hook will apply f on s as a monad, and then ignore n to return the result of f s.

Standard library

Sometimes, you might find that J will have support for a verb in its standard library. For example, most of the bitwise integer operations are bound to names which are shorter than using the primitive call.

AND =: (17 b.) NB. it is actually '$:/ :(17 b.)'

Date and time builtins are also available.

Ranges

If you have a set of values [a, b, c] and you want to form a range based on their product like [0, 1, 2, ..., a*b*c-1], the typical approach would be to find their product and then form a range which might be [:i.*/ which costs 6 bytes. A shorter way is ,@i. for 4 bytes since i. can form multidimensional arrays while still counting up, and flattening it will produce an equivalent range.

Printing continuously

A tacit way to print a value and continue to use it without an explicit loop is ([echo) for a monadic case. echo is a verb in the standard library that prints its contents to stdout in the same format used in the interpreter. The hook then passes the same input value out using the left [ verb.

Base 10 digits of an integer

The standard way of acquiring the base 10 digits of an integer is 10#.inv] which costs 8 bytes, too much! An alternative is to convert it to a string and parse it at rank 0 "."0@": which saves a byte, but an even better way is ,.&.": which saves another byte making the final cost 6 bytes instead of 8.


5

Consider using explicit definition instead of writing a tacit verb; sure the 3 :' and ' cost 5 bytes, but you can save a lot of @, @: and [: that way.


5

Some (fairly) common tricks I've seen

I'm sharing a few things that have come in handy for me. Basically all of these are tips I've received myself, but I don't have credits for most.

Sum of a rank one array

Instead of using +/@:(FGH) use (1#.FGH). This means debase to base 1, which effectively means summing an array. Although it's longer than +/, it doesn't require a cap or composition, which often makes it much shorter than using +/.

Counting trailing truths

If you have a boolean list and you want to count the number of trailing truths, use #.~. See here. The APL answer provides a good explanation for how this works. Granted, this has only been helpful to me twice but I figured I'd share it anyways.

Under (&.)

Not a specific trick, but just a general suggestion: the adverb &.-under often leads to elegant and (more importantly) short solutions. Keep it in mind when you're golfing.

Often times it's useful for and other base conversion challenges, e.g. this code which removes the most significant bit from a number: }.&.#: (convert to list of binary digits, remove the first digit, then undo the conversion to a list of binary digits and convert back to decimal). The straightforward solution is two more bytes: #.@}.@#:.

Under is also helpful for challenges where you need to work with decimal digits, since you can use u&.":. For example, the short way miles gives to split to decimal digits uses under: ,.&.":.

A final example is finding the magnitude of a vector: +/&.:*:, note that you need to collect all of the results from *:-square with &.:-under since *:-square is rank zero.


4

Shorter ways to mess with ranks

Sometimes, you'll have code like <"0 i.3 3, where you want to apply a verb v at rank r. However, if you use a noun (like 0), you'll often have to include a space. To avoid this, you can use another verb u of equivalent rank and use u"v instead. For example, since + has rank 0 0 0, we can use <"+ instead of <"0.

Here is a table of all verbs and their ranks (obtainable by using v b. 0):

0 0 0     > + * - % ^ | ! ? <. <: >. >: +. +: *. *: %: ^. j. o. q: r.
0 _ _     -. -: E. i: p:
1 0 1     p..
1 0 _     { A.
1 1 0     p.
1 1 1     #.
1 1 _     C.
1 _ _     ;: ". i. I.
2 _ 2     %.
_ 0 0     = < ~. ~: {: }: ?. L.
_ 1 0     #:
_ 1 _     $ # |. |: {. }. ": {::
_ _ _     , ; [ ] _: $. $: ,. ,: /: \: [: e. s: u: x: 0:

To use this table, find the desired rank r on the left hand side, then choose an appropriate verb v from the right hand side. E.g., if I need to vectorize a verb v at depth 2 _ 2, then I find that rank on the left and choose %. from the right. Then I use v"%. instead of v"2 _ 2.


3

strings library: golfing tips

The strings library is vastly helpful for doing anything with string manipulation. Sure, it takes include'strings' (which is very costly, considering J), but you may at times reap the benefits.

stringreplace

Find yourself using string replace? Observe that A stringreplace B is the same as B rplc A.

In fact, this is how rplc is implemented:

   rplc
 stringreplace~

cuts

The verb cuts provides thus:

cut y at x (conjunction)
string (verb cuts n) text
  n=_1  up to but not including string
  n= 1  up to and including string
  n=_2  after but not including string
  n= 2  after and including string

So it's really slicing a string.


3

Getting numbers from 0 to 4

If there’s a restriction on using numbers in your code:

0 %_: one divided by infinity.
1 #_: how many infinities?
2 #_ _: two infinities.
3 verb: there’s a built-in.
4 dyad: another built-in.

Getting numbers from 10 to 35

Base-inifinity literals: 11:_bb, 26:_bq etc.


3

Tacit programming

Basics

Dyadic verb

x (F G H) y == (x F y) G (x H y)
x (F G) y == x F (G y)
x ([: G H) y == G (x H y)  NB. G is called monadically

NB. Verbs are grouped from the right by units of 3.
NB. For the following, think like G, I, K are replaced by the results of (x G y) etc.
NB. and then the sentence is run as usual.
x (F G H I J K) y == x (F (G H (I J K))) y
                  == x F ((x G y) H ((x I y) J (x K y)))

NB. Using conjunctions for dyadic verb
x F@G y == F (x G y)  NB. Atop; Same as x ([: F G) y; Consider as golfing alternatives
x F&G y == (G x) F (G y)  NB. Compose; G is applied monadically to both arguments

Monadic verb

(F G H) y == (F y) G (H y)
(G H) y == y G (H y)  NB. Note that this is different from APL
([: G H) y == G (H y)
(F G H I J K) y == (F (G H (I J K))) y
                == y F ((G y) H ((I y) J (K y)))
F@G y == F (G y)

Misc

x&F y == x F y
F&y x == x F y
y F~ x == x F y
F~ y == y F y

Tricks

(F x) G (H y)

Tacit solution: (G~F)~H; depending on the actual verbs, consider rearranging the left and right arguments to remove ~.

x ((G~F)~H) y
x (G~F)~ (H y)
(H y) (G~F) x
(H y) G~ (F x)
(F x) G (H y)

Monadic-Dyadic replacements

>:y == 1+y
<:y == 1-~y or _1+y
+:y == 2*y
-.y == 1-y
-:y == 2%~y
*:y == 2^~y
#.y == 2#.y
#.inv y == 2#.inv y  NB. #: doesn't work this way
{.y == 0{y
{:y == _1{y
}.y == 1}.y
+/y == 1#.y

1
(G~F)~H is pure bubbly goodness!
Jonah

2

& is your friend, use it wisely

v is a verb, n is a noun, x and y are left and right arguments, respectively.

Monad &: Introduce ~ inside adverb/conjunction chain

An adverb/conjunction chain evaluates from the left. So something like _2&+/\&.> won't work because it parses like (_2&+)/\&.> while we want _2&(+/\)&.>. In this case, swapping the left/right of +/\ can save a byte, as in +/\~&_2&.> because this one parses as ((+/\)~)&_2&.>. To see why this works:

+/\~&_2 y
is equivalent to
y +/\~ _2
is equivalent to
_2 +/\ y
is equivalent to
_2&(+/\) y

Dyad &: Repeat x times

Did you know that if you give a left argument x to &, the function applies it x times to y? Quite a few challenges ask you to do certain operation x times. It is mainly achievable in two ways:

  • Use the power operator ^: without right operand

If the operation is v, then v^: becomes an adverb train that, when given a left operand, becomes a monadic verb. So v is applied to y, x times.

x(v^:)y
is equivalent to
(v^:x)y
  • Use the dyadic & as the outermost conjunction

To use this, you need to identify a constant n and a dyadic verb u, so that either n u y or y u n is equivalent to v. Then you can write n&u or u&n to solve the entire task. This form is most effective when the choice of the constant is obvious, e.g. 3 in 3 u: (convert chars to ASCII values).

Also, u&n is slightly preferred over n&u when the outermost structure of u is a conjunction or adverb (in which case n&u should be n&(u); you can do u~&n instead).

Note that you can place the dyadic & anywhere in a train to achieve repeating arbitrary function to arbitrary argument, in the similar sense to dynamic ^:.

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.