Znajdź największą lukę między dobrymi liczbami pierwszymi


28

Zgodnie z piękną tradycją pytań, takich jak Znajdź największą liczbę pierwszą, której długość, suma i iloczyn jest liczbą pierwszą , jest to wariant największego największego wyzwania.

Wkład

Twój kod nie powinien przyjmować żadnych danych wejściowych.

Definicja

Mówimy głównym pjest goodjeśli p-1ma dokładnie 2odmienne czynniki pierwszych.

Wydajność

Kod powinien wyjściowa bezwzględna różnica między kolejnymi liczbami pierwszymi dobrymi qi ptak, że |q-p|jest tak duży, jak to możliwe i qjest najmniejszym dobry prime większa niż p. Możesz wydać dowolną liczbę dobrych par, a twój ostatni wynik zostanie wykorzystany jako wynik.

Przykład

Sekwencja pierwszych 55 dobrych liczb pierwszych to https://oeis.org/A067466 .

Wynik

Twój wynik jest po prostu |q-p|za parę dobrych liczb pierwszych, które wyprowadzasz.

Języki i biblioteki

Możesz użyć dowolnego języka lub biblioteki (która nie została zaprojektowana do tego wyzwania), z wyjątkiem funkcji bibliotecznych do testowania pierwotności lub faktorowania liczb całkowitych. Jednak do celów punktacji uruchomię Twój kod na moim komputerze, więc podaj jasne instrukcje, jak uruchomić go na Ubuntu.

Moja maszyna Czasy zostaną uruchomione na moim komputerze. Jest to standardowa instalacja Ubuntu na 8-rdzeniowym procesorze AMD FX-8350 8 GB. Oznacza to również, że muszę być w stanie uruchomić Twój kod.

Detale

  • Zabiję twój kod po 2 minutach, chyba że wcześniej zabraknie mu pamięci. Dlatego powinien upewnić się, że coś wyprowadził przed odcięciem.
  • Nie możesz używać żadnego zewnętrznego źródła liczb pierwszych.
  • Możesz użyć probabilistycznych metod testowania liczb pierwszych, chociaż Mego powiedział mi, że przy dobrych tabelach Miller-Rabin może testować do 341,550,071,728,321 (lub nawet wyżej) deterministycznie. Zobacz także http://miller-rabin.appspot.com/ .

Najlepsze wpisy, które sprawdzają wszystkie liczby całkowite od 1

  • 756 przez cat in Go
  • 756 autorstwa El'endii Starman w Pythonie
  • 1932 Adnan w C # (używając mono 3.2.8)
  • 2640 przez yeti w Pythonie (przy użyciu pypy 4.01)
  • 2754 autorstwa Reto Koradi w C ++
  • 3486 autorstwa Petera Taylora w Javie
  • 3900 przez primo w RPython (przy użyciu pypy 4.01)
  • 4176 autor: The Coder in Java

Najlepsze wpisy, które mogą pominąć dużą liczbę liczb całkowitych, aby znaleźć dużą lukę

  • 14226 autorstwa Reto Koradi w C ++
  • 22596 przez primo w RPython (używając pypy 4.01). Rekord osiągnięty po 5 sekundach!

Ta definicja wygląda podobnie do definicji Bezpieczna liczba pierwsza , a oprócz 5 = 2 * 2 +1 każda bezpieczna liczba pierwsza jest „dobrą liczbą pierwszą”. (Chociaż istnieją dobre liczby pierwsze, które nie są liczbami bezpiecznymi, np. 13 = 2 * 2 * 3 + 1, więc myślę, że to nie pomaga w wyzwaniu.)
Paŭlo Ebermann


@ PaŭloEbermann Czy mam rację, że nie wiadomo nawet na pewno, czy istnieje nieskończona liczba bezpiecznych liczb pierwszych? Czy to oznacza, że ​​nie wiemy na pewno, że istnieje nieskończona liczba dobrych liczb pierwszych?

@Lembik Nie jestem ekspertem od bezpiecznych liczb pierwszych, właśnie zauważyłem, że definicje są dość podobne i szukałem bezpiecznych liczb pierwszych.
Paŭlo Ebermann,

Zrobiłem to teraz w Labview, ale myślę, że nie będziesz w stanie uruchomić. Przechodzę teraz do 1686 roku, czy jest jakiś sposób, aby dostać się do rankingu? jeśli tak, idź i zoptymalizuj to trochę.
Eumel,

Odpowiedzi:


12

RPython (PyPy 4.0.1), 4032

RPython jest ograniczonym podzbiorem Pythona, który można przetłumaczyć na C, a następnie skompilować za pomocą RPython Toolchain. Jego wyraźnym celem jest pomoc w tworzeniu tłumaczy językowych, ale można go również używać do kompilacji prostych programów.

Aby skompilować, pobierz bieżące źródło PyPy (PyPy 4.0.1) i uruchom następujące czynności:

$ pypy /pypy-4.0.1-src/rpython/bin/rpython --opt=3 good-primes.py

Wynikowy plik wykonywalny zostanie nazwany good-primes-club podobny w bieżącym katalogu roboczym.


Uwagi dotyczące wdrażania

Generator liczb pierwszych primesjest nieograniczonym sito Eratostenesa, które używa koła, aby uniknąć wielokrotności 2 , 3 , 5 lub 7 . Wywołuje się także rekurencyjnie, aby wygenerować następną wartość do użycia przy oznaczaniu. Jestem bardzo zadowolony z tego generatora. Profilowanie linii ujawnia, że ​​dwie najwolniejsze linie to:

37>      n += o
38>      if n not in sieve:

więc nie sądzę, że jest wiele miejsca na ulepszenia, inne niż być może przy użyciu większego koła.

W celu sprawdzenia „dobroci”, najpierw wszystkie czynniki dwóch są usuwane z n-1 , używając nieco kręcącego się hacka, aby znaleźć największą potęgę dwóch, która jest dzielnikiem (n-1 & 1-n). Ponieważ p-1 jest koniecznie nawet dla dowolnej liczby pierwszej p> 2 , wynika z tego, że 2 musi być jednym z odrębnych czynników pierwszych. To, co pozostaje, jest wysyłane do is_prime_powerfunkcji, która robi to, co sugeruje jej nazwa. Sprawdzanie, czy wartość jest siłą pierwszą, jest „prawie wolne”, ponieważ odbywa się to jednocześnie z kontrolą pierwotności, przy co najwyżej O (log p n) operacjach, gdzie p jest najmniejszym pierwszym czynnikiem n. Podział próbny może wydawać się nieco naiwny, ale według moich testów jest to najszybsza metoda dla wartości mniejszych niż 2 32 . Oszczędzam trochę, ponownie wykorzystując koło z sita. W szczególności:

59>      while p*p < n:
60>        for o in offsets:

poprzez iterację na kole o długości 48, p*p < nczek zostanie pominięty tysiące razy, przy niskiej, niskiej cenie nie większej niż 48 dodatkowych operacji modulo. Pomija również ponad 77% wszystkich kandydatów, a nie 50%, biorąc tylko szanse.

Ostatnie kilka wyników to:

3588 (987417437 - 987413849) 60.469000s
3900 (1123404923 - 1123401023) 70.828000s
3942 (1196634239 - 1196630297) 76.594000s
4032 (1247118179 - 1247114147) 80.625000s
4176 (1964330609 - 1964326433) 143.047000s
4224 (2055062753 - 2055058529) 151.562000s

Kod jest również prawidłowym Pythonem i powinien osiągnąć 3588 ~ 3900, gdy jest uruchamiany z najnowszym interpreterem PyPy.


# primes less than 212
small_primes = [
    2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37,
   41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
   97,101,103,107,109,113,127,131,137,139,149,151,
  157,163,167,173,179,181,191,193,197,199,211]

# pre-calced sieve of eratosthenes for n = 2, 3, 5, 7
# distances between sieve values, starting from 211
offsets = [
  10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6,
   6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
   2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6,
   4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2]

# tabulated, mod 105
dindices =[
  0,10, 2, 0, 4, 0, 0, 0, 8, 0, 0, 2, 0, 4, 0,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 6, 0, 0, 2,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 2,
  0, 6, 6, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 4, 2,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 6, 2,
  0, 6, 0, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 8,
  0, 0, 2, 0,10, 0, 0, 4, 0, 0, 0, 2, 0, 4, 2]

def primes(start = 0):
  for n in small_primes[start:]: yield n
  pg = primes(6)
  p = pg.next()
  q = p*p
  sieve = {221: 13, 253: 11}
  n = 211
  while True:
    for o in offsets:
      n += o
      stp = sieve.pop(n, 0)
      if stp:
        nxt = n/stp
        nxt += dindices[nxt%105]
        while nxt*stp in sieve: nxt += dindices[nxt%105]
        sieve[nxt*stp] = stp
      else:
        if n < q:
          yield n
        else:
          sieve[q + dindices[p%105]*p] = p
          p = pg.next()
          q = p*p

def is_prime_power(n):
  for p in small_primes:
    if n%p == 0:
      n /= p
      while n%p == 0: n /= p
      return n == 1
  p = 211
  while p*p < n:
    for o in offsets:
      p += o
      if n%p == 0:
        n /= p
        while n%p == 0: n /= p
        return n == 1
  return n > 1

def main(argv):
  from time import time
  t0 = time()
  m = 0
  p = q = 7
  pgen = primes(3)

  for n in pgen:
    d = (n-1 & 1-n)
    if is_prime_power(n/d):
      p, q = q, n
      if q-p > m:
        m = q-p
        print m, "(%d - %d) %fs"%(q, p, time()-t0)

  return 0

def target(*args):
  return main, None

if __name__ == '__main__':
  from sys import argv
  main(argv)

RPython (PyPy 4.0.1), 22596

To przesłanie różni się nieco od innych opublikowanych do tej pory, ponieważ nie sprawdza wszystkich dobrych liczb pierwszych, ale wykonuje stosunkowo duże skoki. Wadą tego jest to, że nie można użyć sit [Stoję skorygowany?] , Więc trzeba polegać całkowicie na testach pierwotności, które w praktyce są nieco wolniejsze. Istnieje również szczęśliwy środek między stopą wzrostu a liczbą wartości sprawdzanych za każdym razem. Mniejsze wartości są znacznie szybsze do sprawdzenia, ale większe wartości mają większe luki.

Aby uspokoić bogów matematyki, postanowiłem zastosować sekwencję podobną do Fibonacciego, mając następny punkt początkowy jako sumę dwóch poprzednich. Jeśli po sprawdzeniu 10 par nie zostaną znalezione żadne nowe rekordy, skrypt przejdzie do następnego.

Ostatnie kilka wyników to:

6420 (12519586667324027 - 12519586667317607) 0.364000s
6720 (707871808582625903 - 707871808582619183) 0.721000s
8880 (626872872579606869 - 626872872579597989) 0.995000s
10146 (1206929709956703809 - 1206929709956693663) 4.858000s
22596 (918415168400717543 - 918415168400694947) 8.797000s

Podczas kompilacji używane są 64-bitowe liczby całkowite, chociaż w kilku miejscach zakłada się, że można dodać dwie liczby całkowite bez przepełnienia, więc w praktyce można użyć tylko 63 liczb całkowitych. Po osiągnięciu 62 bitów znaczących wartość prądu jest dwukrotnie zmniejszana o połowę, aby uniknąć przepełnienia obliczeń. Rezultatem jest to, że tasuje skryptów poprzez wartości na 2 60 - 2 62 przedziale. Nieprzekraczanie natywnej precyzji liczb całkowitych powoduje również, że skrypt jest interpretowany szybciej.

Do potwierdzenia tego wyniku można użyć następującego skryptu PARI / GP:

isgoodprime(n) = isprime(n) && omega(n-1)==2

for(n = 918415168400694947, 918415168400717543, {
  if(isgoodprime(n), print(n" is a good prime"))
})

try:
  from rpython.rlib.rarithmetic import r_int64

  from rpython.rtyper.lltypesystem.lltype import SignedLongLongLong
  from rpython.translator.c.primitive import PrimitiveType

  # check if the compiler supports long long longs
  if SignedLongLongLong in PrimitiveType:

    from rpython.rlib.rarithmetic import r_longlonglong

    def mul_mod(a, b, m):
      return r_int64(r_longlonglong(a)*b%m)

  else:

    from rpython.rlib.rbigint import rbigint

    def mul_mod(a, b, m):
      biga = rbigint.fromrarith_int(a)
      bigb = rbigint.fromrarith_int(b)
      bigm = rbigint.fromrarith_int(m)

      return biga.mul(bigb).mod(bigm).tolonglong()


  # modular exponentiation b**e (mod m)
  def pow_mod(b, e, m):
    r = 1
    while e:
      if e&1: r = mul_mod(b, r, m)
      e >>= 1
      b = mul_mod(b, b, m)
    return r

except:

  import sys

  r_int64 = int
  if sys.maxint == 2147483647:
    mul_mod = lambda a, b, m: a*b%m
  else:
    mul_mod = lambda a, b, m: int(a*b%m)
  pow_mod = pow


# legendre symbol (a|m)
# note: returns m-1 if a is a non-residue, instead of -1
def legendre(a, m):
  return pow_mod(a, (m-1) >> 1, m)


# strong probable prime
def is_sprp(n, b=2):
  if n < 2: return False
  d = n-1
  s = 0
  while d&1 == 0:
    s += 1
    d >>= 1

  x = pow_mod(b, d, n)
  if x == 1 or x == n-1:
    return True

  for r in xrange(1, s):
    x = mul_mod(x, x, n)
    if x == 1:
      return False
    elif x == n-1:
      return True

  return False


# lucas probable prime
# assumes D = 1 (mod 4), (D|n) = -1
def is_lucas_prp(n, D):
  Q = (1-D) >> 2

  # n+1 = 2**r*s where s is odd
  s = n+1
  r = 0
  while s&1 == 0:
    r += 1
    s >>= 1

  # calculate the bit reversal of (odd) s
  # e.g. 19 (10011) <=> 25 (11001)
  t = r_int64(0)
  while s:
    if s&1:
      t += 1
      s -= 1
    else:
      t <<= 1
      s >>= 1

  # use the same bit reversal process to calculate the sth Lucas number
  # keep track of q = Q**n as we go
  U = 0
  V = 2
  q = 1
  # mod_inv(2, n)
  inv_2 = (n+1) >> 1
  while t:
    if t&1:
      # U, V of n+1
      U, V = mul_mod(inv_2, U + V, n), mul_mod(inv_2, V + mul_mod(D, U, n), n)
      q = mul_mod(q, Q, n)
      t -= 1
    else:
      # U, V of n*2
      U, V = mul_mod(U, V, n), (mul_mod(V, V, n) - 2 * q) % n
      q = mul_mod(q, q, n)
      t >>= 1

  # double s until we have the 2**r*sth Lucas number
  while r:
    U, V = mul_mod(U, V, n), (mul_mod(V, V, n) - 2 * q) % n
    q = mul_mod(q, q, n)
    r -= 1

  # primality check
  # if n is prime, n divides the n+1st Lucas number, given the assumptions
  return U == 0


# primes less than 212
small_primes = [
    2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37,
   41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
   97,101,103,107,109,113,127,131,137,139,149,151,
  157,163,167,173,179,181,191,193,197,199,211]

# pre-calced sieve of eratosthenes for n = 2, 3, 5, 7
indices = [
    1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
   53, 59, 61, 67, 71, 73, 79, 83, 89, 97,101,103,
  107,109,113,121,127,131,137,139,143,149,151,157,
  163,167,169,173,179,181,187,191,193,197,199,209]

# distances between sieve values
offsets = [
  10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6,
   6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
   2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6,
   4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2]

bit_lengths = [
  0x00000000, 0x00000001, 0x00000003, 0x00000007,
  0x0000000F, 0x0000001F, 0x0000003F, 0x0000007F,
  0x000000FF, 0x000001FF, 0x000003FF, 0x000007FF,
  0x00000FFF, 0x00001FFF, 0x00003FFF, 0x00007FFF,
  0x0000FFFF, 0x0001FFFF, 0x0003FFFF, 0x0007FFFF,
  0x000FFFFF, 0x001FFFFF, 0x003FFFFF, 0x007FFFFF,
  0x00FFFFFF, 0x01FFFFFF, 0x03FFFFFF, 0x07FFFFFF,
  0x0FFFFFFF, 0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF]

max_int = 2147483647


# returns the index of x in a sorted list a
# or the index of the next larger item if x is not present
# i.e. the proper insertion point for x in a
def binary_search(a, x):
  s = 0
  e = len(a)
  m = e >> 1
  while m != e:
    if a[m] < x:
      s = m
      m = (s + e + 1) >> 1
    else:
      e = m
      m = (s + e) >> 1
  return m


def log2(n):
  hi = n >> 32
  if hi:
    return binary_search(bit_lengths, hi) + 32
  return binary_search(bit_lengths, n)


# integer sqrt of n
def isqrt(n):
  c = n*4/3
  d = log2(c)

  a = d>>1
  if d&1:
    x = r_int64(1) << a
    y = (x + (n >> a)) >> 1
  else:
    x = (r_int64(3) << a) >> 2
    y = (x + (c >> a)) >> 1

  if x != y:
    x = y
    y = (x + n/x) >> 1
    while y < x:
      x = y
      y = (x + n/x) >> 1
  return x

# integer cbrt of n
def icbrt(n):
  d = log2(n)

  if d%3 == 2:
    x = r_int64(3) << d/3-1
  else:
    x = r_int64(1) << d/3

  y = (2*x + n/(x*x))/3
  if x != y:
    x = y
    y = (2*x + n/(x*x))/3
    while y < x:
      x = y
      y = (2*x + n/(x*x))/3
  return x


## Baillie-PSW ##
# this is technically a probabalistic test, but there are no known pseudoprimes
def is_bpsw(n):
  if not is_sprp(n, 2): return False

  # idea shamelessly stolen from Mathmatica's PrimeQ
  # if n is a 2-sprp and a 3-sprp, n is necessarily square-free
  if not is_sprp(n, 3): return False

  a = 5
  s = 2
  # if n is a perfect square, this will never terminate
  while legendre(a, n) != n-1:
    s = -s
    a = s-a
  return is_lucas_prp(n, a)


# an 'almost certain' primality check
def is_prime(n):
  if n < 212:
    m = binary_search(small_primes, n)
    return n == small_primes[m]

  for p in small_primes:
    if n%p == 0:
      return False

  # if n is a 32-bit integer, perform full trial division
  if n <= max_int:
    p = 211
    while p*p < n:
      for o in offsets:
        p += o
        if n%p == 0:
          return False
    return True

  return is_bpsw(n)


# next prime strictly larger than n
def next_prime(n):
  if n < 2:
    return 2

  # first odd larger than n
  n = (n + 1) | 1
  if n < 212:
    m = binary_search(small_primes, n)
    return small_primes[m]

  # find our position in the sieve rotation via binary search
  x = int(n%210)
  m = binary_search(indices, x)
  i = r_int64(n + (indices[m] - x))

  # adjust offsets
  offs = offsets[m:] + offsets[:m]
  while True:
    for o in offs:
      if is_prime(i):
        return i
      i += o


# true if n is a prime power > 0
def is_prime_power(n):
  if n > 1:
    for p in small_primes:
      if n%p == 0:
        n /= p
        while n%p == 0: n /= p
        return n == 1

    r = isqrt(n)
    if r*r == n:
      return is_prime_power(r)

    s = icbrt(n)
    if s*s*s == n:
      return is_prime_power(s)

    p = r_int64(211)
    while p*p < r:
      for o in offsets:
        p += o
        if n%p == 0:
          n /= p
          while n%p == 0: n /= p
          return n == 1

    if n <= max_int:
      while p*p < n:
        for o in offsets:
          p += o
          if n%p == 0:
            return False
      return True

    return is_bpsw(n)
  return False


def next_good_prime(n):
  n = next_prime(n)
  d = (n-1 & 1-n)
  while not is_prime_power(n/d):
    n = next_prime(n)
    d = (n-1 & 1-n)
  return n


def main(argv):
  from time import time
  t0 = time()

  if len(argv) > 1:
    n = r_int64(int(argv[1]))
  else:
    n = r_int64(7)

  if len(argv) > 2:
    limit = int(argv[2])
  else:
    limit = 10

  m = 0
  e = 1
  q = n
  try:
    while True:
      e += 1
      p, q = q, next_good_prime(q)
      if q-p > m:
        m = q-p
        print m, "(%d - %d) %fs"%(q, p, time()-t0)
        n, q = p, n+p
        if log2(q) > 61:
          q >>= 2
        e = 1
        q = next_good_prime(q)
      elif e > limit:
        n, q = p, n+p
        if log2(q) > 61:
          q >>= 2
        e = 1
        q = next_good_prime(q)
  except KeyboardInterrupt:
    pass
  return 0

def target(*args):
  return main, None

if __name__ == '__main__':
  from sys import argv
  main(argv)

Witam;) Drobna aktualizacja, osiąga 3330 około 15 sekund szybciej na moim komputerze (i wkrótce potem kończy się pamięć ...).
primo,

1
Rzeczywiście tak jest.

1
@Lembik Myślę, że może tam być pewien niezbadany potencjał. Najlepsze, co udało mi się zlokalizować, umieszczając „losowe ładunki głębokości” (sekwencje rosnące jak n! ) To 8274 (85773786705365303 - 85773786705357029). Mogę dodać to jako przesłanie bonusu.
primo,

1
Używając pypy (nieskompilowane) otrzymuję 13386 (32770812521685383 - 32770812521671997) 21,64s. To dość szybko!

1
22596 (918415168400717543 - 918415168400694947) 4,786576s :)

19

Prawdopodobnie 4032, mieszane sito Atkin-Bernstein i „deterministyczny” Miller-Rabin

Rozkład na koła i dobre liczby pierwsze

Jest bardzo oczywiste, że z wyjątkiem 2, 3 i 5, każda liczba pierwsza jest chroniona prawem autorskim do 2 * 3 * 5 = 60. Istnieje 16 klas równoważności modulo 60, które są coprime do 60, więc każdy test pierwotności musi tylko sprawdzić te 16 przypadków.

Kiedy jednak szukamy „dobrych” liczb pierwszych, możemy jeszcze bardziej rozrzedzić stado. Jeśli gcd(x, 60) = 1okaże się, że w większości przypadków gcd(x-1, 60)jest to 6 lub 10. Istnieje 6 wartości, xdla których jest to 2:

17, 23, 29, 47, 53, 59

Dlatego możemy wstępnie obliczyć „dobre” liczby pierwsze formy 2^a 3^b + 1i 2^a 5^b + 1scalić je w wynik generatora liczb pierwszych, który uznaje tylko 10% liczb za nawet potencjalne liczby pierwsze.

Uwagi dotyczące wdrożenia

Ponieważ miałem już implementację Java sita Atkin-Bernstein, która używa już koła jako kluczowego elementu, naturalnie wydawało się, że usuwam niepotrzebne szprychy i dostosowuję kod. Początkowo próbowałem wykorzystać architekturę producent-konsument w celu wykorzystania 8 rdzeni, ale zarządzanie pamięcią było zbyt nieuporządkowane.

Aby sprawdzić, czy liczba pierwsza jest „dobrą” liczbą pierwszą, używam „deterministycznego” testu Millera-Rabina (co tak naprawdę oznacza test Millera-Rabina, który ktoś wcześniej sprawdził na podstawie listy generowanej deterministycznie). Można to z pewnością przepisać, aby użyć również Atkina-Bernsteina, z pewnym buforowaniem, aby pokryć zakresy odpowiadające sqrt, cbrt itp., Ale nie jestem pewien, czy byłoby to ulepszenie (ponieważ testowałoby wiele liczb, które Nie muszę testować), więc to eksperyment na kolejny dzień.

Na moim dość starym komputerze to działa

987417437 - 987413849 = 3588
1123404923 - 1123401023 = 3900
1196634239 - 1196630297 = 3942
1247118179 - 1247114147 = 4032

a właściwie dokładnie 2 minuty

1964330609 - 1964326433 = 4176
2055062753 - 2055058529 = 4224
2160258917 - 2160254627 = 4290

odpowiednio o 3:10, 3:20 i 3:30.

import java.util.*;

public class PPCG65876 {
    public static void main(String[] args) {
        long[] specials = genSpecials();
        int nextSpecialIdx = 0;
        long nextSpecial = specials[nextSpecialIdx];
        long p = 59;
        long bestGap = 2;

        for (long L = 1; true; L += B) {

            long[][] buf = new long[6][B >> 6];
            int[] Lmodqq = new int[qqtab.length];
            for (int i = 0; i < Lmodqq.length; i++) Lmodqq[i] = (int)(L % qqtab[i]);

            for (long[] arr : buf) Arrays.fill(arr, -1); // TODO Can probably get a minor optimisation by inverting this
            for (int[] parms : elliptic) traceElliptic(buf[parms[0]], parms[1], parms[2], parms[3] - L, parms[4], parms[5], Lmodqq, totients[parms[0]]);
            for (int[] parms : hyperbolic) traceHyperbolic(buf[parms[0]], parms[1], parms[2], parms[3] - L, Lmodqq, totients[parms[0]]);

            // We need to filter down to squarefree numbers.
            long pg_base = L * M;
            squarefreeMid(buf, invTotients, pg_base, 247, 1, 38);
            squarefreeMid(buf, invTotients, pg_base, 253, 1, 38);
            squarefreeMid(buf, invTotients, pg_base, 257, 1, 38);
            squarefreeMid(buf, invTotients, pg_base, 263, 1, 38);
            squarefreeMid(buf, invTotients, pg_base, 241, 0, 2);
            squarefreeMid(buf, invTotients, pg_base, 251, 0, 2);
            squarefreeMid(buf, invTotients, pg_base, 259, 0, 2);
            squarefreeMid(buf, invTotients, pg_base, 269, 0, 2);

            // Turn bitmasks into primes
            long[] page = new long[150000]; // TODO This can almost certainly be smaller
            long[] transpose = new long[6];
            for (int j = 0, off = 0; j < (B >> 6); j++) {
                // Reduce cache locality problems by transposing.
                for (int k = 0; k < 6; k++) transpose[k] = buf[k][j];
                for (long mask = 1L; mask != 0; mask <<= 1) {
                    for (int k = 0; k < 6; k++) {
                        if ((transpose[k] & mask) == 0) page[off++] = pg_base + totients[k];
                    }

                    pg_base += M;
                }
            }

            // Insert specials and look for gaps.
            for (long q : page) {
                if (q == 0) break;

                // Do we need to insert one or more specials?
                while (nextSpecial < q) {
                    if (nextSpecial - p > bestGap) {
                        bestGap = nextSpecial - p;
                        System.out.format("%d - %d = %d\n", nextSpecial, p, bestGap);
                    }

                    p = nextSpecial;
                    nextSpecial = specials[++nextSpecialIdx];
                }

                if (isGood(q)) {
                    if (q - p > bestGap) {
                        bestGap = q - p;
                        System.out.format("%d - %d = %d\n", q, p, bestGap);
                    }

                    p = q;
                }
            }

        }
    }

    static long[] genSpecials() {
        // 2^a 3^b + 1 or 2^a 5^b + 1
        List<Long> tmp = new LinkedList<Long>();
        for (long threes = 3; threes <= 4052555153018976267L; threes *= 3) {
            for (long t = threes; t > 0; t <<= 1) tmp.add(t + 1);
        }
        for (long fives = 5; fives <= 7450580596923828125L; fives *= 5) {
            for (long f = fives; f > 0; f <<= 1) tmp.add(f + 1);
        }

        // Filter down to primes
        Iterator<Long> it = tmp.iterator();
        while (it.hasNext()) {
            long next = it.next();
            if (next < 60 || next > 341550071728321L || !isPrime(next)) it.remove();
        }

        Collections.sort(tmp);
        long[] specials = new long[tmp.size()];
        for (int i = 0; i < tmp.size(); i++) specials[i] = tmp.get(i);

        return specials;
    }

    private static boolean isGood(long p) {
        long d = p - 1;
        while ((d & 1) == 0) d >>= 1;

        if (d == 1) return false;

        // Is d a prime power?
        if (d % 3 == 0 || d % 5 == 0) {
            // Because of the way the filters before this one work, nothing should reach here.
            throw new RuntimeException("Should be unreachable");
        }

        // TODO Is it preferable to reuse the Atkin-Bernstein code, caching pages which correspond
        // to the possible power candidates?
        if (isPrime(d)) return true;
        for (int a = (d % 60 == 1 || d % 60 == 49) ? 2 : 3; (1L << a) < d; a++) {
            long r = (long)(0.5 + Math.pow(d, 1. / a));
            if (d == (long)(0.5 + Math.pow(r, a)) && isPrime(r)) return true;
        }

        return false;
    }

    /*---------------------------------------------------
               Deterministic Miller-Rabin
    ---------------------------------------------------*/
    public static boolean isPrime(int x) {
        // See isPrime(long). We pick bases which are known to work for the entire range of int.
        // Special case for the bases.
        if (x == 2 || x == 7 || x == 61) return true;

        int d = x - 1;
        int s = 0;
        while ((d & 1) == 0) { s++; d >>= 1; } // TODO Can be optimised

        if (!isSPRP(2, d, s, x)) return false;
        if (!isSPRP(7, d, s, x)) return false;
        if (!isSPRP(61, d, s, x)) return false;
        return true;
    }

    private static boolean isSPRP(int b, int d, int s, int x /* == d << s */) {
        int l = modPow(b, d, x);
        if (l == 1 || l == x - 1) return true;
        for (int r = 1; r < s; r++) {
            l = modPow(l, 2, x);
            if (l == x - 1) return true;
            if (l == 1) return false;
        }

        return false;
    }

    public static int modPow(int a, int b, int c) {
        int accum = 1;
        while (b > 0) {
            if ((b & 1) == 1) accum = (int)(accum * (long)a % c);
            a = (int)(a * (long)a % c);
            b >>= 1;
        }
        return accum;
    }

    public static boolean isPrime(long x) {
        if (x < Integer.MAX_VALUE) return isPrime((int)x);

        long d = x - 1;
        int s = 0;
        while ((d & 1) == 0) { s++; d >>= 1; } // TODO Can be optimised

        // If b^d == 1 (mod x) or (b^d)^(2^r) == -1 (mod x) for some r < s then we pass for base b.
        // We select bases according to Jaeschke, Gerhard (1993), "On strong pseudoprimes to several bases", Mathematics of Computation 61 (204): 915–926, doi:10.2307/2153262
        // TODO Would it be better to use a set of 5 bases from http://miller-rabin.appspot.com/ ?
        if (!isSPRP(2, d, s, x)) return false;
        if (!isSPRP(3, d, s, x)) return false;
        if (!isSPRP(5, d, s, x)) return false;
        if (!isSPRP(7, d, s, x)) return false;
        if (x < 3215031751L) return true;
        if (!isSPRP(11, d, s, x)) return false;
        if (x < 2152302898747L) return true;
        if (!isSPRP(13, d, s, x)) return false;
        if (x < 3474749660383L) return true;
        if (!isSPRP(17, d, s, x)) return false;
        if (x < 341550071728321L) return true;

        throw new IllegalArgumentException("Overflow");
    }

    private static boolean isSPRP(long b, long d, int s, long x /* == d << s */) {
        if (b * (double)x > Long.MAX_VALUE) throw new IllegalArgumentException("Overflow"); // TODO Work out more precise page bounds

        long l = modPow(b, d, x);
        if (l == 1 || l == x - 1) return true;
        for (int r = 1; r < s; r++) {
            l = modPow(l, 2, x);
            if (l == x - 1) return true;
            if (l == 1) return false;
        }

        return false;
    }

    /**
     * Computes a^b (mod c). We assume c &lt; 2^62.
     */
    public static long modPow(long a, long b, long c) {
        long accum = 1;
        while (b > 0) {
            if ((b & 1) == 1) accum = prodMod(accum, a, c);
            a = prodMod(a, a, c);
            b >>= 1;
        }
        return accum;
    }

    /**
     * Computes a*b (mod c). We assume c &lt; 2^62.
     */
    private static long prodMod(long a, long b, long c) {
        // The naive product would require 128-bit integers.

        // Consider a = (A << 32) + B, b = (C << 31) + D. Different shifts chosen deliberately.
        // Then ab = (AC << 63) + (AD << 32) + (BC << 31) + BD with intermediate values remaining in 63 bits.
        long AC = (a >> 32) * (b >> 31) % c;
        long AD = (a >> 32) * (b & ((1L << 31) - 1)) % c;
        long BC = (a & ((1L << 32) - 1)) * (b >> 31) % c;
        long BD = (a & ((1L << 32) - 1)) * (b & ((1L << 31) - 1)) % c;

        long t = AC;
        for (int i = 0; i < 31; i++) {
            t = (t + t) % c;
        }
        // t = (AC << 31)
        t = (t + AD) % c;
        t = (t + t) % c;
        t = (t + BC) % c;
        // t = (AC << 32) + (AD << 1) + BC
        for (int i = 0; i < 31; i++) {
            t = (t + t) % c;
        }
        // t = (AC << 63) + (AD << 32) + (BC << 31)
        return (t + BD) % c;
    }

    /*---------------------------------------------------
                      Atkin-Bernstein
    ---------------------------------------------------*/
    // Page size.
    private static final int B = 1001 << 6;
    // Wheel modulus for sharding between binary quadratic forms.
    private static final int M = 60;

    // Squares of primes 5 < q < 240
    private static final int[] qqtab = new int[] {
        49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809,
        3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881,
        12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761,
        36481, 37249, 38809, 39601, 44521, 49729, 51529, 52441, 54289, 57121
    };
    // If a_i == q^{-2} (mod 60) is the reciprocal of qq[i], qq60tab[i] = qq[i] + (1 - a_i * qq[i]) / 60
    private static int[] qq60tab = new int[] {
        9, 119, 31, 53, 355, 97, 827, 945, 251, 1653, 339, 405, 515,
        3423, 3659, 823, 4957, 977, 6137, 1263, 7789, 1725, 10031, 1945, 2099, 11683,
        2341, 2957, 16875, 3441, 18999, 21831, 22421, 4519, 4871, 5113, 5487, 31507, 32215,
        35873, 6829, 7115, 38941, 43779, 9117, 9447, 51567, 9953, 56169
    };

    /**
     * Produces a set of parameters for traceElliptic to find solutions to ax^2 + cy^2 == d (mod M).
     * @param d The target residue.
     * @param a Binary quadratic form parameter.
     * @param c Binary quadratic form parameter.
     */
    private static List<int[]> initElliptic(final int[] invTotients, final int d, final int a, final int c) {
        List<int[]> rv = new ArrayList<int[]>();

        // The basic idea is that we maintain an invariant of the form
        //     M k = a x^2 + c y^2 - d
        // Therefore we increment x in steps F such that
        //     a((x + F)^2 - x^2) == 0 (mod M)
        // and similarly for y in steps G.
        int F = computeIncrement(a, M), G = computeIncrement(c, M);
        for (int f = 1; f <= F; f++) {
            for (int g = 1; g <= G; g++) {
                if ((a*f*f + c*g*g - d) % M == 0) {
                    rv.add(new int[] { invTotients[d], (2*f + F)*a*F/M, (2*g + G)*c*G/M, (a*f*f + c*g*g - d)/M, 2*a*F*F/M, 2*c*G*G/M });
                }
            }
        }

        return rv;
    }

    private static int computeIncrement(int a, int M) {
        // Find smallest F such that M | 2aF and M | aF^2
        int l = M / gcd(M, 2 * a);
        for (int F = l; true; F += l) {
            if (a*F*F % M == 0) return F;
        }
    }

    public static int gcd(int a, int b) {
        while (b != 0) {
            int t = b;
            b = a % b;
            a = t;
        }

        return a;
    }

    // NB This is generalised somewhat from primegen's implementation.
    private static void traceElliptic(final long[] buf, int x, int y, long start, final int cF2, final int cG2, final int[] Lmodqq, final int d) {
        // Bring the annular segment into the range of ints.
        start += 1000000000;
        while (start < 0) {
            start += x;
            x += cF2;
        }
        start -= 1000000000;
        int i = (int)start;

        while (i < B) {
            i += x;
            x += cF2;
        }

        while (true) {
            x -= cF2;
            if (x <= cF2 >> 1) {
                // It makes no sense that doing this in here should perform well, but empirically it does much better than
                // only eliminating the squares once.
                squarefreeTiny(buf, Lmodqq, d);
                return;
            }
            i -= x;

            while (i < 0) {
                i += y;
                y += cG2;
            }

            int i0 = i, y0 = y;
            while (i < B) {
                buf[i >> 6] ^= 1L << i;
                i += y;
                y += cG2;
            }
            i = i0;
            y = y0;
        }
    }

    // This only handles 3x^2 - y^2, and is closer to a direct port of primegen.
    private static void traceHyperbolic(final long[] a, int x, int y, long start, final int[] Lmodqq, final int d) {
        x += 5;
        y += 15;

        // Bring the segment into the range of ints.
        start += 1000000000;
        while (start < 0) {
            start += x;
            x += 10;
        }
        start -= 1000000000;
        int i = (int)start;

        while (i < 0) {
            i += x;
            x += 10;
        }

        while (true) {
            x += 10;
            while (i >= B) {
                if (x <= y) {
                    squarefreeTiny(a, Lmodqq, d);
                    return;
                }
                i -= y;
                y += 30;
            }

            int i0 = i, y0 = y;
            while (i >= 0 && y < x) {
                a[i >> 6] ^= 1L << i;
                i -= y;
                y += 30;
            }
            i = i0 + x - 10;
            y = y0;
        }
    }

    private static void squarefreeTiny(final long[] a, final int[] Lmodqq, final int d) {
        for (int j = 0; j < qqtab.length; ++j) {
            int qq = qqtab[j];
            int k = qq - 1 - ((Lmodqq[j] + qq60tab[j] * d - 1) % qq);
            while (k < B) {
                a[k >> 6] |= 1L << k;
                k += qq;
            }
        }
    }

    private static void squarefreeMid(long[][] buf, int[] invTotients, final long base, int q, int dqq, int di) {
        int qq = q * q;
        q = M * q + (M * M / 4);

        while (qq < M * B) {
            int i = qq - (int)(base % qq);
            if ((i & 1) == 0) i += qq;

            if (i < M * B) {
                int qqhigh = ((qq / M) << 1) + dqq;
                int ilow = i % M;
                int ihigh = i / M;
                while (ihigh < B) {
                    int n = invTotients[ilow];
                    if (n >= 0) buf[n][ihigh >> 6] |= 1L << ihigh;

                    ilow += di;
                    ihigh += qqhigh;
                    if (ilow >= M) {
                        ilow -= M;
                        ihigh += 1;
                    }
                }
            }

            qq += q;
            q += M * M / 2;
        }

        squarefreebig(buf, invTotients, base, q, qq);
    }

    private static void squarefreebig(long[][] buf, int[] invTotients, final long base, int q, long qq) {
        long bound = base + M * B;
        while (qq < bound) {
            long i = qq - (base % qq);
            if ((i & 1) == 0) i += qq;

            if (i < M * B) {
                int pos = (int)i;
                int n = invTotients[pos % M];
                if (n >= 0) {
                    int ihigh = pos / M;
                    buf[n][ihigh >> 6] |= 1L << ihigh;
                }
            }

            qq += q;
            q += M * M / 2;
        }
    }

    // The relevant totients of M - those which only have one forced prime factor.
    static final int[] totients = new int[] { 17, 23, 29, 47, 53, 59 };
    private static final int[] invTotients;
    // Parameters for tracing the hyperbolic BQF used for 59+60Z.
    private static final int[][] hyperbolic = new int[][] {
        {5, 1, 2, -1}, {5, 1, 8, -2}, {5, 1, 22, -9}, {5, 1, 28, -14}, {5, 4, 7, -1}, {5, 4, 13, -3}, {5, 4, 17, -5}, {5, 4, 23, -9},
        {5, 5, 4, 0}, {5, 5, 14, -3}, {5, 5, 16, -4}, {5, 5, 26, -11}, {5, 6, 7, 0}, {5, 6, 13, -2}, {5, 6, 17, -4}, {5, 6, 23, -8},
        {5, 9, 2, 3}, {5, 9, 8, 2}, {5, 9, 22, -5}, {5, 9, 28, -10}, {5, 10, 1, 4}, {5, 10, 11, 2}, {5, 10, 19, -2}, {5, 10, 29, -10}
    };

    // Parameters for tracing the elliptic BQFs used for all totients except 11 and 59.
    private static final int[][] elliptic;
    static {
        invTotients = new int[M];
        Arrays.fill(invTotients, -1);
        for (int i = 0; i < totients.length; i++) invTotients[totients[i]] = i;

        // Calculate the parameters for tracing the elliptic BQFs from a table of the BQF used for each totient.
        // E.g. for 17+60Z we use 5x^2 + 3y^2.
        int[][] bqfs = new int[][] {
            {17, 5, 3}, {23, 5, 3}, {29, 4, 1}, {47, 5, 3}, {53, 5, 3}
        };
        List<int[]> parmSets = new ArrayList<int[]>();
        for (int[] bqf : bqfs) parmSets.addAll(initElliptic(invTotients, bqf[0], bqf[1], bqf[2]));
        elliptic = parmSets.toArray(new int[0][]);
    }
}

Zapisz jako PPCG65876.java, skompiluj jako javac PPCG65876.javai uruchom jako java -Xmx1G PPCG65876.


Myślałem, że prawdopodobnie zrobiłbyś coś, co jest znacznie powyżej mojej głowy. ;) Reguły Lembika wykluczają jednak funkcje biblioteczne do testowania podstawowego, więc myślę, że będziesz musiał użyć własnych.
Reto Koradi,

@RetoKoradi, tak, po ponownym przeczytaniu Zgadzam się, że metody w „ Możesz użyć probabilistycznych metod testowania podstawowego ” oznaczają raczej techniki niż funkcje. Zastąpienie go również powoduje znaczne przyspieszenie, więc dodatkowe podziękowania za wskazanie go.
Peter Taylor,

Dzięki za to! Zaskakujące, że dostaje się tylko do 3486 na moim komputerze. W linii poleceń też nie potrzebuję -Xmx1G.

Czy otrzymujesz znacznie wyższe wartości, jeśli pozwalasz mu działać dłużej? Właśnie zatrzymałem mój po około 40 godzinach. Okazało się, że 6216 to największa różnica (z pierwszymi wartościami około 16 miliardów) gdzieś około 12-24 godzin i nic więcej po tym, zanim ją zatrzymałem. Nowe „wysokie wyniki” z czasem stają się coraz rzadsze.
Reto Koradi,

1
@RetoKoradi, nie pozwalałem mu działać dłużej niż 15 minut. Pracuję nad metodami przyspieszenia isGoodkontroli.
Peter Taylor,

10

C ++, 2754 (wszystkie wartości, test pierwotności siły brutalnej)

To brutalna siła, ale jest to początek, zanim nasi matematycy mogą zacząć pracować z czymś bardziej wydajnym.

W razie potrzeby mogę dodać więcej wyjaśnień, ale prawdopodobnie jest to bardzo oczywiste z kodu. Ponieważ jeśli pjest liczbą pierwszą inną niż 2, wiemy, że p - 1jest parzysta, a jednym z dwóch czynników jest zawsze 2. Wyliczamy liczby pierwsze, zmniejszamy p - 1o wszystkie czynniki 2 i sprawdzamy, czy pozostała wartość jest liczbą pierwszą, czy że wszystkie jego czynniki są takie same.

Kod:

#include <stdint.h>
#include <vector>
#include <iostream>

int main()
{
    std::vector<uint64_t> primes;
    uint64_t prevGoodVal = 0;
    uint64_t maxDiff = 0;

    for (uint64_t val = 3; ; val += 2)
    {
        bool isPrime = true;
        std::vector<uint64_t>::const_iterator itFact = primes.begin();
        while (itFact != primes.end())
        {
            uint64_t fact = *itFact;
            if (fact * fact > val)
            {
                break;
            }

            if (!(val % fact))
            {
                isPrime = false;
                break;
            }

            ++itFact;
        }

        if (!isPrime)
        {
            continue;
        }

        primes.push_back(val);

        uint64_t rem = val;
        --rem;
        while (!(rem & 1))
        {
            rem >>= 1;
        }

        if (rem == 1)
        {
            continue;
        }

        bool isGood = true;
        itFact = primes.begin();
        while (itFact != primes.end())
        {
            uint64_t fact = *itFact;
            if (fact * fact > rem)
            {
                break;
            }

            if (!(rem % fact))
            {
                while (rem > fact)
                {
                    rem /= fact;
                    if (rem % fact)
                    {
                        break;
                    }
                }

                isGood = (rem == fact);
                break;
            }

            ++itFact;
        }

        if (isGood)
        {
            if (prevGoodVal)
            {
                uint64_t diff = val - prevGoodVal;
                if (diff > maxDiff)
                {
                    maxDiff = diff;
                    std::cout << maxDiff
                              << " (" << val << " - " << prevGoodVal << ")"
                              << std::endl;
                }
            }

            prevGoodVal = val;
        }
    }

    return 0;
}

Program drukuje różnicę oraz odpowiadające jej dwie dobre liczby pierwsze za każdym razem, gdy zostanie znaleziona nowa maksymalna różnica. Przykładowe dane wyjściowe z testu uruchomionego na moim komputerze, gdzie zgłoszona wartość 2754 zostaje znaleziona po około 1:20 minutach:

4 (11 - 7)
6 (19 - 13)
8 (37 - 29)
14 (73 - 59)
24 (137 - 113)
30 (227 - 197)
32 (433 - 401)
48 (557 - 509)
50 (769 - 719)
54 (1283 - 1229)
60 (1697 - 1637)
90 (1823 - 1733)
108 (2417 - 2309)
120 (3329 - 3209)
126 (4673 - 4547)
132 (5639 - 5507)
186 (7433 - 7247)
222 (8369 - 8147)
258 (16487 - 16229)
270 (32507 - 32237)
294 (34157 - 33863)
306 (35879 - 35573)
324 (59393 - 59069)
546 (60293 - 59747)
570 (145823 - 145253)
588 (181157 - 180569)
756 (222059 - 221303)
780 (282617 - 281837)
930 (509513 - 508583)
1044 (1046807 - 1045763)
1050 (1713599 - 1712549)
1080 (1949639 - 1948559)
1140 (2338823 - 2337683)
1596 (3800999 - 3799403)
1686 (6249743 - 6248057)
1932 (12464909 - 12462977)
2040 (30291749 - 30289709)
2160 (31641773 - 31639613)
2190 (34808447 - 34806257)
2610 (78199097 - 78196487)
2640 (105072497 - 105069857)
2754 (114949007 - 114946253)
^C

real    1m20.233s
user    1m20.153s
sys 0m0.048s

7

C ++, 14226 (tylko wysokie wartości, test Millera-Rabina)

Publikowanie tego osobno, ponieważ całkowicie różni się od mojego początkowego rozwiązania i nie chciałem całkowicie zastępować postu, który otrzymał wiele pozytywnych opinii.

Dzięki @primo za wskazanie problemu z oryginalną wersją. W teście liczby pierwszej nastąpiło przepełnienie dużych liczb.

Wykorzystuje to niektóre spostrzeżenia uzyskane podczas ewolucji innych rozwiązań. Główne obserwacje to:

  • Ponieważ wyniki wyraźnie pokazują, że luki stają się większe, gdy same liczby pierwsze stają się większe, nie ma sensu zawracać sobie głowy małymi liczbami pierwszymi. Badanie dużych wartości pierwszych jest znacznie bardziej skuteczne.
  • Probabilistyczne testowanie liczb pierwszych jest wymagane dla liczb pierwszych tego rozmiaru.

Na tej podstawie zastosowana tutaj metoda jest dość prosta:

  • Do testowania pierwotności stosuje się test Millera-Rabina. Implementacja oparta jest na pseudo-kodzie na stronie wikpedii . Dzięki zastosowanym zasadom zapewni prawidłowe wartości do 3825123056546413051 (patrz OEIS A014233 ), co jest wystarczające dla zakresu tu użytych wartości.
  • Aby ustalić, czy liczby pierwsze są dobrymi liczbami początkowymi, potęgi 2 są usuwane. Faktoring pozostałej wartości byłby bardzo drogi, ale nie jest konieczny. Zamiast tego obliczam znacznie mniej możliwych korzeni za pomocą podwójnej matematyki i sprawdzam, czy którykolwiek z nich daje liczbę całkowitą, która w rzeczywistości jest prawidłowym pierwiastkiem.
  • Matematyka używa głównie 64-bitowych wartości bez znaku, a 128-bitowe wartości bez znaku są potrzebne dla niektórych wartości tymczasowych w teście pierwotności.
  • Ponieważ używam podwójnej matematyki dla pierwiastków, a podwójna może dokładnie reprezentować liczby całkowite o maksymalnej długości 53 bitów, maksymalny rozmiar, który można bezpiecznie obsłużyć za pomocą tego kodu wynosi 54 bity (liczba przekonwertowana na podwójną jest co najwyżej o połowę mniejsza niż główny).
  • Ponieważ 54 bity były maksymalnym rozmiarem liczby, której byłem pewien, zacznę od liczby nieco mniejszej niż maksymalna liczba 54-bitowa. Kod zgłasza większe luki dla jeszcze większych wartości początkowych i prawdopodobnie są one poprawne, ale nie jestem tego pewien.

Wyniki:

1266 (16888498602640739 - 16888498602639473)
1470 (16888498602645563 - 16888498602644093)
2772 (16888498602651629 - 16888498602648857)
2862 (16888498602655829 - 16888498602652967)
3120 (16888498602675053 - 16888498602671933)
3756 (16888498602685769 - 16888498602682013)
4374 (16888498602696257 - 16888498602691883)
5220 (16888498602745493 - 16888498602740273)
5382 (16888498603424039 - 16888498603418657)
5592 (16888498603511279 - 16888498603505687)
5940 (16888498603720697 - 16888498603714757)
6204 (16888498605020837 - 16888498605014633)
6594 (16888498605999017 - 16888498605992423)
14226 (16888498608108539 - 16888498608094313)
^C

real    0m26.335s
user    0m26.312s
sys 0m0.008s

Kod:

#include <stdint.h>
#include <cmath>
#include <iostream>

uint64_t intRoot(uint64_t a, int p)
{
    double e = 1.0 / static_cast<double>(p);
    double dRoot = pow(a, e);

    return static_cast<uint64_t>(dRoot + 0.5);
}

uint64_t intPow(uint64_t a, int e)
{
    uint64_t r = 1;

    while (e)
    {
        if (e & 1)
        {
            r *= a;
        }

        e >>= 1;
        a *= a;
    }

    return r;
}

uint64_t modPow(uint64_t a, uint64_t e, uint64_t m)
{
    uint64_t r = 1;
    a %= m;

    while (e)
    {
        if (e & 1)
        {
            __uint128_t t = r;
            t *= a;
            t %= m;
            r = t;
        }

        e >>= 1;
        __uint128_t t = a;
        t *= a;
        t %= m;
        a = t;
    }

    return r;
}

bool isPrime(uint64_t n)
{
    const uint64_t a[] = {2, 3, 5, 7, 11, 13, 17, 19, 23};

    if (n < 2)
    {
        return false;
    }

    for (int k = 0; k < 9; ++k)
    {
        if (n == a[k])
        {
            return true;
        }

        if (n % a[k] == 0)
        {
            return false;
        }
    }

    int r = __builtin_ctzll(n - 1);
    uint64_t d = (n - 1) >> r;

    for (int k = 0; k < 9; ++k)
    {
        uint64_t x = modPow(a[k], d, n);

        if (x == 1 || x == n - 1)
        {
            continue;
        }

        bool comp = true;
        for (int i = 0; i < r - 1; ++i)
        {
            x = modPow(x, 2, n);
            if (x == 1)
            {
                return false;
            }
            if (x == n - 1)
            {
                comp = false;
                break;
            }
        }

        if (comp)
        {
            return false;
        }
    }

    return true;
}

int main()
{
    uint64_t prevGoodVal = 0;
    uint64_t maxDiff = 0;

    for (uint64_t val = (1ull << 54) - (1ull << 50) + 1; ; val += 2)
    {
        if (isPrime(val))
        {
            uint64_t d = static_cast<double>((val - 1) >> __builtin_ctzll(val - 1));
            bool isGood = false;

            if (isPrime(d))
            {
                isGood = true;
            }
            else
            {
                for (int e = 2; ; ++e)
                {
                    uint64_t r = intRoot(d, e);
                    if (r < 3)
                    {
                        break;
                    }

                    if (intPow(r, e) == d && isPrime(r))
                    {
                        isGood = true;
                        break;
                    }
                }
            }

            if (isGood)
            {
                if (prevGoodVal)
                {
                    uint64_t diff = val - prevGoodVal;
                    if (diff > maxDiff)
                    {
                        maxDiff = diff;
                        std::cout << maxDiff
                                  << " (" << val << " - " << prevGoodVal << ")"
                                  << std::endl;
                    }
                }

                prevGoodVal = val;
            }
        }
    }

    return 0;
}

@primo Powinno być poprawne teraz. Nastąpiło przepełnienie, w którym pomnożyłem dwie 64-bitowe liczby w teście pierwotności, co spowodowało, że zgłosiło ono „kompozyt” dla niektórych dużych liczb pierwszych. Dzięki za zwrócenie na to uwagi. Daj mi znać, jeśli nadal będziesz mieć problem.
Reto Koradi,

To jest dobre. Wyścig trwa? ;)
primo

@primo Miałem kilka znacznie większych wartości, ale użyliby liczb pierwszych, których nie można w pełni reprezentować podwójnym. Myślę, że nadal dałoby to wystarczająco dokładne przybliżenie korzenia, aby uzyskać prawidłowe wyniki. Albo mógłbym zaimplementować algorytm znajdowania roota, który nie używa podwójnych. Ale nie będę w stanie poświęcić na to więcej czasu, zanim wygasa nagroda ...
Reto Koradi

Twoja odpowiedź również osiąga maksimum w 4 sekundy! (Podobnie jak primo.)

6

PyPy-2.4.0

Python-2

xPlik s ...

Odcinek: „Spójrz mamo! Ani jednej dywizji!”

;-)

M = g = 0
B = L = {}
n = 2
while 1:
        if n in L:
                B = P = L[n]
                del L[n]
        else:
                if len(B) == 2:
                        if g:
                                m = n - g
                                if M < m:
                                        M = m
                                        print n, g, m
                        g = n
                P = [n]
        for p in P:
                npp = n + p
                if npp in L:
                        if p not in L[npp]:
                                L[npp] += [p]
                else:
                        L[npp] = [p]
        n += 1

Testowałem to na Debian8 z PyPy-2.4.0, a Python2 zaczął się tak:

timeout 2m pypy -O x
timeout 2m python2 -O x

Jeśli naprawdę jest dużo pamięci RAM, del L[n]wiersz może zostać usunięty.


Podstawowy generator liczb pierwszych jest następujący:

L = {}
n = 2

while 1:

        if n in L:
                P = L[n]
                del L[n]
        else:
                print n
                P = [n]

        for p in P:
                npp = n + p
                if npp in L:
                        if p not in L[npp]:
                                L[npp] += [p]
                else:
                        L[npp] = [p]

        n += 1

Zasadniczo robi dokładnie to, co robi sito Eratostenesa, ale w innej kolejności.

Ljest słownikiem, ale może być postrzegany jako lista (taśma) list liczb. Nieistniejące komórki L[n]są interpretowane tak, jak do tej npory nie są znane podstawowe dzielniki.

whilePętla robi prime lub nie prime decission na każdym nawrocie do L[n].

  • Jeśli L[n]istnieje (to samo co n in L), P = L[n]to lista różnych głównych dzielników n. Więc nnie jest liczbą pierwszą.

  • Jeśli L[n]nie istnieje, nie znaleziono głównego dzielnika. Więc nmusi być liczbą pierwszą, P = [n]będąc znanym dzielnikiem.

Teraz Pjest lista znanych głównych dzielników dla obu przypadków.

for p in PPętli porusza każdy wjazd Pdo przodu o odstęp od jego wartość na taśmie liczb.

W ten sposób dzielniki skaczą na taśmę i to jest powód, dla którego te skaczące liczby muszą być pierwsze. Nowe liczby elsepojawiają się na taśmie tylko w wyniku powyższej decyzji i są to liczby bez znanych dzielników innych niż one same. Organizacje nonprime nigdy nie trafiają na te listy L[n].

Liczby pierwsze przeskakujące na liście są różne, ponieważ każda liczba njest sprawdzana tylko raz i jest dodawana tylko jako dzielnik (jeśli nie liczba pierwsza :) 0lub (jeśli liczba pierwsza :) 1razy. Tylko znane dzielniki główne będą się poruszać do przodu, ale nigdy się nie powielą. Tak więc L[n]zawsze będą miały wyraźne główne dzielniki lub będą puste.


Powrót do górnego programu dla dobrych luk w liczbach pierwszych:

    if n in L:
            B = P = L[n]

... utrzymuje prime dzielniki nw Bkiedy nwiadomo, że nie będzie pierwsza.

Jeśli nzostanie uznana za pierwszą, Bzawiera listę głównych dzielników poprzedniego przejścia w pętli, patrząc na n-1:

    else:
            if len(B) == 2:

... len(B) == 2oznacza to, że n - 1ma dwa różne główne dzielniki.

                        if g:
                                m = n - g
                                if M < m:
                                        M = m
                                        print n, g, m
                        g = n

gpo prostu pamięta ostatnią dobrą Mdobrą liczbę pierwszą przed nową, jest długością poprzedniej maksymalnej dobrej pierwszej prime i mdługością nowo znalezionej luki.


Szczęśliwe zakończenie.


Niezłe rozwiązanie. Dla mnie uderza to w 2640 w około 117s.
primo,

1
Czy mógłbyś dodać małe wyjaśnienie?

1
@Lembik: Gotowe ...

4

C #, prawdopodobnie 1932

Przekonałem się, że im szybciej algorytm znajduje liczby pierwsze, tym lepszy wynik. Jestem też całkiem pewien, że mój algorytm nie jest najbardziej optymalną metodą wyszukiwania podstawowego.

using System;
using System.Collections.Generic;

namespace GoodPrimes
{
    class Program
    {
        static void Main(string[] args)
        {
            int[] list_of_primes = new int[168]{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997};
            bool is_last_prime = false;
            int last_prime = 0;
            int max_value = 0;
            int old_max_value = 1000000;
            int old_min_value = 3;
            HashSet<int> primeSet = new HashSet<int>();
            primeSet.Add(2);
            int X = 0;
            Console.WriteLine("Initialize primes until " + old_max_value);
            for (int i = old_min_value; i < old_max_value; i++)
            {
                if (IsPrime(i, primeSet))
                    primeSet.Add(i);
            }
            old_min_value = old_max_value;
            for (int i = 3; ; i += 2)
            {
                if (i > old_max_value)
                {
                    old_max_value += 500000;
                    Console.WriteLine("Initialize primes until " + old_max_value);
                    for (int j = old_min_value; j < old_max_value; j++)
                    {
                        for(int k = 0; k < list_of_primes.Length; k++)
                            if(j % list_of_primes[k] == 0 && j > list_of_primes[k])
                                continue;
                        if (IsPrime(j, primeSet))
                            primeSet.Add(j);
                    }
                    old_min_value = old_max_value;
                }
                if (primeSet.Contains(i))
                {
                    is_last_prime = false;
                    X = (i - 1) / 2;
                    while (X % 2 == 0)
                        X = X / 2;
                    if (IsPrime(X, primeSet))
                        is_last_prime = true;
                    for (int j = 3; j < i; j++)
                    {
                        if (j % 2 == 0 && j > 2)
                            continue;
                        if (j % 3 == 0 && j > 3)
                            continue;
                        if (j % 5 == 0 && j > 5)
                            continue;
                        if (j % 7 == 0 && j > 7)
                            continue;
                        if (j % 11 == 0 && j > 11)
                            continue;
                        if (j % 13 == 0 && j > 13)
                            continue;
                        if (j % 17 == 0 && j > 17)
                            continue;

                        if (X % j == 0 || is_last_prime)
                        {
                            while (X % j == 0)
                                X = X / j;
                            if ((primeSet.Contains(j) && X == 1) || is_last_prime)
                            {
                                while (X % j == 0)
                                    X = X / j;
                                if (X == 1 || is_last_prime)
                                {
                                    if (i - last_prime > max_value)
                                    {
                                        max_value = i - last_prime;
                                        Console.WriteLine("New max value: " + max_value.ToString() + " (" + i.ToString() + "-" + last_prime.ToString() + ")");
                                    }
                                    last_prime = i;
                                }
                            }
                            break;
                        }
                    }
                }
            }
            Console.ReadLine();
        }

        private static bool IsPrime(int i, HashSet<int> j)
        {
            if (i == 2)
                return true;
            for (int m = 2; m < Math.Sqrt(System.Convert.ToDouble(i)) + 1; m++)
            {
                if (j.Contains(m))
                {
                    if (m % 2 == 0 && m > 2)
                        continue;
                    if (m % 3 == 0 && m > 3)
                        continue;
                    if (m % 5 == 0 && m > 5)
                        continue;
                    if (m % 7 == 0 && m > 7)
                        continue;
                    if (m % 11 == 0 && m > 11)
                        continue;
                    if (m % 13 == 0 && m > 13)
                        continue;
                    if (m % 17 == 0 && m > 17)
                        continue;
                    if (i % m == 0)
                        return false;
                }
            }
            return true;
        }
    }
}

4

Python 3, 546

... za dwie minuty na moim komputerze, który moim zdaniem jest znacznie mniej wydajny niż twój.

def getPrimes_parallelized(): #uses sieve of Sundaram
        yield 2
        yield 3
        P = [[4,1]]
        i = 2
        while 1:
            if P[0][0] <= i:
                while P[0][0] <= i:
                    P[0][0] += 2*P[0][1]+1
                    P.sort()
            elif P[0][0] > i:
                yield 2*i+1
                P.append([2*(i+i*i), i])
                P.sort()
            i += 1

def goodPrimes(x):
    P = getPrimes_parallelized()
    primes = []

    for p in P:
        primes.append(p)
        n = p-1
        factors = []

        for p2 in primes:
            if n%p2 == 0:
                factors.append(p2)
                while n%p2 == 0: n //= p2

            if len(factors) > x: break

        if len(factors) <= x: yield p

maxdiff = 0
GP = goodPrimes(2)
p1 = next(GP)
gp = next(GP)
gps = [(p1,gp)]

while 1:
    if gp-p1 > maxdiff:
        maxdiff = gp-p1
        print("p: %d, q: %d, |q-p|: %d" % (p1,gp,gp-p1))
    p1,gp = gp,next(GP)

Prawdopodobnie mógłbym to usprawnić, optymalizując x=2skrzynkę, ale eh. Wystarczająco dobry. : P


Twój kod właśnie p: 2, q: 3, |q-p|: 1dla mnie wychodzi.

1
@Lembik: Ach, ups. Wytłumaczyłem to z wersji, w której było coś knującego, i pominąłem kluczową kwestię. Naprawiony.
El'endia Starman,

4

Idź, prawdopodobnie 756

Wstyd! Jestem takim nowicjuszem, że tylko naiwnie użyłem starego kodu i oczekiwałem, że zadziała i będzie szybki! Gdybym to zaimplementował i zbudował w oparciu o dobre liczby pierwsze, byłoby to o wiele szybsze, ale niestety, uczę się. (Prawdopodobnie jutro odpowiem ponownie w pełni przebudowanym rozwiązaniem, które jest specjalnie zaprojektowane).

package main

import "fmt"

func mkPrime(ch chan<- int) {
    for i := 2; ; i++ {
        ch <- i // Send 'i' to channel 'ch'.
    }
}

// Copy the values from channel 'in' to channel 'out',
// removing those divisible by 'prime'.
func filterPrm(in <-chan int, out chan<- int, prime int) {
    for {
        i := <-in // Receive value from 'in'.
        if i%prime != 0 {
            out <- i // Send 'i' to 'out'.
        }
    }
}

func mkPFac(max int, ch chan<- int) {
    ch <- 2
    for i := 3; i <= max; i += 2 {
        ch <- i
    }
    ch <- -1 // signal that the limit is reached
}

// Copy the values from channel 'in' to channel 'out',
// removing those divisible by 'prime'.
func filterPFac(in <-chan int, out chan<- int, prime int) {
    for i := <-in; i != -1; i = <-in {
        if i%prime != 0 {
            out <- i
        }
    }
    out <- -1
}

func calcPFactors(numToFac int) []int {
    rv := []int{}
    ch := make(chan int)
    go mkPFac(numToFac, ch)
    for prime := <-ch; (prime != -1) && (numToFac > 1); prime = <-ch {
        for numToFac%prime == 0 {
            numToFac = numToFac / prime
            rv = append(rv, prime)
        }
        ch1 := make(chan int)
        go filterPFac(ch, ch1, prime)
        ch = ch1
    }
    return rv
}

func rmDup(list []int) []int {
    var nlist []int
    for _, e := range list {
        if !isIn(e, nlist) {
            nlist = append(nlist, e)
        }
    }
    return nlist
}

func isIn(a int, list []int) bool {
    for _, b := range list {
        if b == a {
            return true
        }
    }
    return false
}

// The prime sieve: Daisy-chain Filter processes.
func main() {
    var diff, prev, high int
    ch := make(chan int) // Create a new channel.
    go mkPrime(ch)       // Launch Generate goroutine.
    for i := 0; i < 10000000000; i++ {
        prime := <-ch
        list := rmDup(calcPFactors(prime - 1))
        if len(list) == 2 {
            //fmt.Println(list, prime)
            diff = prime - prev
            //fmt.Println(diff)
            prev = prime
            if diff > high {
                high = diff
                fmt.Println(high)
            }
        }
        ch1 := make(chan int)
        go filterPrm(ch, ch1, prime)
        ch = ch1
    }
}

Oczywiście wykorzystuje współbieżność.


1
Go jest zawsze mile widziane :)

4

Java, 4224 (99,29 s)

Mocno spersonalizowane sito Eratostenesa z przewagą BitSet

import java.util.BitSet;

public class LargeGoodPrimeGap {

    // Use this to find upto Large Gap of 4032 - Max 4032 found in 55.17 s
    // static int    limit         = 125_00_00_000;

    // Use this to find upto Large Gap of 4224 - Max 4224 found in 99.29 s
    static int    limit         = Integer.MAX_VALUE - 1;

    // BitSet is highly efficient against boolean[] when Billion numbers were involved
    // BitSet uses only 1 bit for each number
    // boolean[] uses 8 bits aka 1 byte for each number which will produce memory issues for large numbers
    static BitSet primes        = new BitSet(limit + 1);
    static int    limitSqrt     = (int) Math.ceil(Math.sqrt(limit));

    static int    maxAllowLimit = Integer.MAX_VALUE - 1;

    static long   start         = System.nanoTime();

    public static void main(String[] args) {

        genPrimes();

        findGoodPrimesLargeGap();

    }

    // Generate Primes by Sieve of Eratosthenes
    // Sieve of Eratosthenes is much efficient than Sieve of Atkins as
    // Sieve of Atkins involes Division, Modulus, Multiplication, Subtraction, Addition but
    // Sieve of Eratosthenes involves only addition and multiplication
    static void genPrimes() {

        // Check if the Given limit exceeds the Permitted Limit 2147483646 (Integer.MAX_VALUE - 1)
        // If the limit exceeded, Out the Error Message and Exit the Program
        if ( limit > maxAllowLimit ) {
            System.err.printf(String.format("Limit %d should not be Greater than Max Limit %d", limit, maxAllowLimit));
            System.exit(0);
        }

        // Mark numbers from 2 to limit + 1 as Prime
        primes.set(2, limit + 1);

        // Now all Values in primes will be true except 0 and 1,
        // True  represents     prime number 
        // False represents not prime number

        // Set the First Prime number
        int prime = 2;
        // Set the First multiple of prime
        int multiple = prime;
        // Reduce the limit by 1 if limit == Interger.MAX_VALUE - 1 to prevent
        // Integer overflow on multiple variable
        int evenLimit = limit == Integer.MAX_VALUE - 1 ? limit - 1 : limit;

        // Mark all Even Numbers as Not Prime except 2
        while ( (multiple += prime) <= evenLimit ) {
            primes.clear(multiple);
        }

        // If evenLimit != limit, set last even number as Not Prime
        if ( evenLimit != limit ) {
            primes.clear(limit);
        }

        int primeAdd;

        // Set odd multiples of each Prime as not Prime;
        // prime <= limitSqrt -> Check Current Prime <= SQRT(limit)
        // prime = primes.nextSetBit(prime + 1) -> Assign the next True (aka Prime) value as Current Prime
        //  ^ - Above initialisation is highly efficient as Next True check is only based on bits
        // prime > 0 -> To handle -ve values returned by above True check if no more True is to be found
        for ( prime = 3; prime > 0 && prime <= limitSqrt; prime = primes.nextSetBit(prime + 1) ) {
            // All Prime Numbers except 2 were odd numbers
            // Adding a Prime number with itself will result in an Even number,
            // but all the Even numbers were already marked as not Prime.
            // So every odd multiple (3rd, 5th, 7th, ...) of Current Prime will only be marked as not Prime
            // and skipping all the even multiples (2nd, 4th, 6th, ...)
            // This reduces the time for prime calculation by ~50% when comparing with all multiples marking
            primeAdd = prime + prime;
            // multiple = prime * prime -> Unmarked Prime will appear only from this number as previous values
            // are already marked as Non Prime by previous prime multiples
            // multiple += primeAdd -> Increases the multiple by multiple + (CurrentPrime x 2) which will
            // always be a odd multiple (5th, 7th, 9th, ...)
            for ( multiple = prime * prime; multiple <= limit && multiple > 0; multiple += primeAdd ) {
                // Clear or False the multiple if it True
                primes.clear(multiple);
            }
        }

        double end = (System.nanoTime() - start) / 1000000000.0;
        System.out.printf("Total Primes upto %d = %d in %.2f s", limit, primes.cardinality(), end);

    }

    static void findGoodPrimesLargeGap() {

        int prevGP = 7;
        int prevDiff = 0;

        for ( int i = 11; i <= limit && i > 0; i = primes.nextSetBit(i + 1) ) {
            int gp = i - 1;
            int distPrimes = 0;
            for ( int j = 2; j <= limitSqrt && distPrimes < 3 && j > 0; j = primes.nextSetBit(j + 1) ) {
                if ( gp % j == 0 ) {
                    ++distPrimes;
                    while ( gp % j == 0 ) {
                        gp = gp / j;
                    }
                    if ( gp <= 1 ) {
                        break;
                    }
                }
                if ( primes.get(gp) ) {
                    ++distPrimes;
                    break;
                }
            }
            if ( distPrimes == 2 ) {
                int currDiff = i - prevGP;
                if ( currDiff > prevDiff ) {
                    System.out.println(
                            String.format("(%d - %d) %d (%.2f s)", i, prevGP, prevDiff = currDiff, (System.nanoTime() - start) / 1000000000.0));
                }
                prevGP = i;
            }
        }

    }

}

Czas potrzebny zależy od maksymalnego limitu liczb pierwszych, które będą obliczane.

Dla

static int    limit         = Integer.MAX_VALUE - 1;

Total Primes upto 2147483646 = 105097564 in 17.65 s
(11 - 7) 4 (17.71 s)
(19 - 13) 6 (17.71 s)
(37 - 29) 8 (17.71 s)
(73 - 59) 14 (17.71 s)
(137 - 113) 24 (17.71 s)
(227 - 197) 30 (17.71 s)
(433 - 401) 32 (17.71 s)
(557 - 509) 48 (17.71 s)
(769 - 719) 50 (17.71 s)
(1283 - 1229) 54 (17.71 s)
(1697 - 1637) 60 (17.71 s)
(1823 - 1733) 90 (17.71 s)
(2417 - 2309) 108 (17.71 s)
(3329 - 3209) 120 (17.71 s)
(4673 - 4547) 126 (17.71 s)
(5639 - 5507) 132 (17.71 s)
(7433 - 7247) 186 (17.71 s)
(8369 - 8147) 222 (17.71 s)
(16487 - 16229) 258 (17.71 s)
(32507 - 32237) 270 (17.72 s)
(34157 - 33863) 294 (17.72 s)
(35879 - 35573) 306 (17.72 s)
(59393 - 59069) 324 (17.72 s)
(60293 - 59747) 546 (17.72 s)
(145823 - 145253) 570 (17.73 s)
(181157 - 180569) 588 (17.73 s)
(222059 - 221303) 756 (17.73 s)
(282617 - 281837) 780 (17.73 s)
(509513 - 508583) 930 (17.74 s)
(1046807 - 1045763) 1044 (17.75 s)
(1713599 - 1712549) 1050 (17.77 s)
(1949639 - 1948559) 1080 (17.77 s)
(2338823 - 2337683) 1140 (17.78 s)
(3800999 - 3799403) 1596 (17.80 s)
(6249743 - 6248057) 1686 (17.85 s)
(12464909 - 12462977) 1932 (17.96 s)
(30291749 - 30289709) 2040 (18.31 s)
(31641773 - 31639613) 2160 (18.34 s)
(34808447 - 34806257) 2190 (18.41 s)
(78199097 - 78196487) 2610 (19.40 s)
(105072497 - 105069857) 2640 (20.07 s)
(114949007 - 114946253) 2754 (20.32 s)
(246225989 - 246223127) 2862 (24.01 s)
(255910223 - 255907313) 2910 (24.31 s)
(371348513 - 371345567) 2946 (27.97 s)
(447523757 - 447520673) 3084 (30.50 s)
(466558553 - 466555373) 3180 (31.15 s)
(575713847 - 575710649) 3198 (35.00 s)
(606802529 - 606799289) 3240 (36.13 s)
(784554983 - 784551653) 3330 (42.89 s)
(873632213 - 873628727) 3486 (46.39 s)
(987417437 - 987413849) 3588 (50.97 s)
(1123404923 - 1123401023) 3900 (56.60 s)
(1196634239 - 1196630297) 3942 (59.70 s)
(1247118179 - 1247114147) 4032 (61.88 s)
(1964330609 - 1964326433) 4176 (94.89 s)
(2055062753 - 2055058529) 4224 (99.29 s)

Jest to zaskakująco szybsze niż w przypadku innych aplikacji Java!

@Lembik, dodam bardziej szczegółowe wyjaśnienie później dzisiaj ...
The Coder

@Lembik, Highly Customized the Sieve Logic. Teraz czas generowania wszystkich liczb pierwszych jest skrócony o ~ 50%. Tak więc w ciągu 100s można znaleźć maks. Dużą różnicę w zakresie liczby całkowitej.MAX_VALUE
The Coder

3

Python 3, 1464

Z pomocą Lembika , którego pomysłem było po prostu sprawdzenie pierwszych dwóch dobrych liczb pierwszych po potędze dwóch, a gdy zostanie znaleziony, natychmiast przejdź do następnej potęgi dwóch. Jeśli ktoś może użyć tego jako punktu przeskoku, nie krępuj się. Część moich wyników znajduje się poniżej po uruchomieniu tego w IDLE. Kod następuje.

Podziękowania dla primo, gdy złapałem ich listę małych liczb pierwszych dla tego kodu.

Edycja: Zredagowałem kod, aby pasował do rzeczywistej specyfikacji problemu (dwa różne dzielniki główne nie do końca dwa odrębne dzielniki główne), i wdrożyłem, aby nie przechodzić do następnej potęgi dwóch, dopóki dobre liczby pierwsze znalezione przez program nie mają luka większa niż z ostatnich dwóch dobrych liczb pierwszych, które znalazła. Powinienem również podziękować Peterowi Taylorowi , ponieważ wykorzystałem jego pomysł, że dobre liczby pierwsze mogą być tylko kilkoma wartościami mod 60.

Ponownie uruchomiłem to na wolnym komputerze w trybie IDLE, więc wyniki mogą być szybsze w przypadku PyPy, ale nie byłem w stanie tego sprawdzić.

Próbka moich wyników (p, q, qp, czas):

8392997 8393999 1002 2.6750288009643555
16814663 16815713 1050 7.312098026275635
33560573 33561653 1080 8.546097755432129
67118027 67119323 1296 10.886202335357666
134245373 134246753 1380 20.37420392036438
268522349 268523813 1464 59.23987054824829
536929187 536931047 1860 95.36681914329529

Mój kod:

from time import time

small_primes = [
    2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37,
   41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
   97,101,103,107,109,113,127,131,137,139,149,151,
  157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239]

def good(n=0):
    end = n or 100
    time0 = time()
    x,y = 0,0
    recent_max = 0
    for i in range(2,end):
        two = 2**i
        for j in range(two+3,2*two,2):
            m=j%60
            if not(m==17or m==23or m==29or m==47or m==53or m==59): continue
            comp = 0
            for p in small_primes:
                if j % p == 0 and j != p:
                    comp = 1
                    break
            for p in range(241,int(pow(j,.5))+1,2):
                if j % p == 0 and j != p:
                    comp = 1
                    break
            if comp: continue
            d = j-1 & 1-j
            if is_prime_power((j-1)/d):
                x,y = y,j
                if x and y and y-x > recent_max:
                    print(x,y,y-x,time()-time0)
                    recent_max = y-x
                    x,y=0,0
                    break

def is_prime_power(n):
    for p in small_primes:
        if n%p == 0:
            n //= p
            while n % p == 0: n //= p
            return n == 1
    for p in range(241,int(pow(n,.5))+1,2):
        if n%p == 0:
            n //= p
            while n % p == 0: n //= p
            return n == 1
    return n > 1

good()

Nie sądzę, żeby twój kod był poprawny. Czy masz jakieś uzasadnienie, aby zwiększać j, 4czy nie 2? I wydaje się bezwarunkowo odrzucić, jeśli j-1nie jest najlepszym razy potęgą dwójki, gdzie powinno być testowanie czy to się doskonałą moc razy potęgą dwójki.
Peter Taylor,

@PeterTaylor Oh słodki Jezu dziękuję. Wiedziałem, że czegoś mi brakuje. Dwa różne czynniki pierwsze, a nie dokładnie dwa różne czynniki pierwsze. Poprawię to rano.
Sherlock9

W rzeczy samej. Następną dobrą liczbą pierwszą po 549755815199 jest 549755816417 (2 ^ 5 x 17179869263), różnica tylko 1218.
primo

2

Idź: Wszystkie liczby całkowite: 5112

max |q-p| 5112 q 4278566879 p 4278561767

good.go:

// Find the largest gap between good primes
// /codegolf/65876/
//
// We say a prime p is good if p-1 has exactly 2 distinct prime factors.
//
// Your code should output the absolute difference between consecutive
// good primes q and p so that |q-p| is as large as possible and
// q is the smallest good prime larger than p. You may output any number of
// good pairs and your last output will be taken as the score.
//
// The timings will be run on a standard Ubuntu install on
// an 8GB AMD FX-8350 eight-core processor.
// http://products.amd.com/en-us/search/CPU/AMD-FX-Series/AMD-FX-8-Core-Black-Edition/FX-8350/92
//
// I will kill your code after 2 minutes unless it starts to
// run out of memory before that. It should therefore make sure to
// output something before the cut off.
//
// A067466 Primes p such there are 2 distinct prime factors in p-1.
// https://oeis.org/A067466
//
// 7, 11, 13, 19, 23, 29, 37, 41, 47, 53, 59, 73, 83, 89, 97, 101, 107, ...
//
// peterSO: max |q-p| 5112 q 4278566879 p 4278561767
// /codegolf//a/73770/51537
//
// p is a good prime number, if
//
//   p-1 = x**a * y**b
//
// Where p is a prime number, x and y are are distinct prime numbers,
// and a and b are positive integers.
//
// For p > 2, p is odd and (p-1) is even. Therefore, either x or y = 2.

package main

import (
    "fmt"
    "math"
    "runtime"
    "time"
)

var start = time.Now()

const (
    primality = 0x80
    prime     = 0x00
    notprime  = 0x80
    distinct  = 0x7F
)

func oddPrimes(n uint64) (sieve []uint8) {
    // odd prime numbers
    sieve = make([]uint8, (n+1)/2)
    sieve[0] = notprime
    p := uint64(3)
    for i := p * p; i <= n; i = p * p {
        for j := i; j <= n; j += 2 * p {
            sieve[j/2] = notprime
        }
        for p += 2; sieve[p/2] == notprime; p += 2 {
        }
    }
    return sieve
}

func maxGoodGap(n uint64) {
    // odd prime numbers
    sieve := oddPrimes(n)
    // good prime numbers
    fmt.Println("|q-p|", " = ", "q", "-", "p", ":", "t")
    m := ((n + 1) + 1) / 2
    var max, px, qx uint64
    for i, s := range sieve {
        if s == prime {
            p := 2*uint64(i) + 1
            if p < m {
                // distinct odd prime number factors
                for j := p + 2*p; j <= m; j += 2 * p {
                    sieve[j/2]++
                }
            }
            // Remove factors of 2 from p-1.
            p1 := p - 1
            for ; p1&1 == 0; p1 >>= 1 {
            }
            // Does p-1 have exactly 2 distinct prime factors?
            // That is, one distinct prime factor other than 2.
            if sieve[p1/2]&distinct <= 1 {
                // maximum consecutive good prime gap
                px, qx = qx, p
                if max < qx-px {
                    max = qx - px
                    if px != 0 {
                        fmt.Println(max, " = ", qx, "-", px, " : ", time.Since(start))
                    }
                }
            }
        }
    }
}

func init() {
    runtime.GOMAXPROCS(1)
}

func main() {
    // Two minutes: max |q-p| 5112 q 4278566879 p 4278561767
    var n uint64 = math.MaxUint32 // 4294967295
    fmt.Println("n =", n)
    maxGoodGap(n)
    fmt.Println("n =", n, "real =", time.Since(start))
}

Wydajność:

$ go build good.go && ./good
n = 4294967295
|q-p|  =  q - p : t
4  =  11 - 7  :  18.997478838s
6  =  29 - 23  :  19.425839298s
8  =  37 - 29  :  19.5924487s
14  =  73 - 59  :  20.351329953s
24  =  137 - 113  :  21.339752269s
30  =  227 - 197  :  22.310449147s
32  =  433 - 401  :  23.511560468s
48  =  557 - 509  :  23.904677275s
50  =  769 - 719  :  24.518310365s
54  =  1283 - 1229  :  25.350700584s
60  =  1697 - 1637  :  25.782520338s
90  =  1823 - 1733  :  25.883049102s
108  =  2417 - 2309  :  26.300049556s
120  =  3329 - 3209  :  26.735575056s
126  =  4673 - 4547  :  27.190597227s
132  =  5639 - 5507  :  27.420936586s
186  =  7433 - 7247  :  27.761805597s
222  =  8369 - 8147  :  27.909656781s
258  =  16487 - 16229  :  28.710626512s
270  =  32507 - 32237  :  29.469193619s
294  =  34157 - 33863  :  29.525197303s
306  =  35879 - 35573  :  29.578355515s
324  =  59393 - 59069  :  30.11620771s
546  =  60293 - 59747  :  30.131928104s
570  =  145823 - 145253  :  31.014864294s
588  =  181157 - 180569  :  31.223246627s
756  =  222059 - 221303  :  31.415507367s
780  =  282617 - 281837  :  31.640006297s
930  =  509513 - 508583  :  32.169485481s
1044  =  1046807 - 1045763  :  32.783669616s
1050  =  1713599 - 1712549  :  33.186784964s
1080  =  1949639 - 1948559  :  33.290533456s
1140  =  2338823 - 2337683  :  33.434568615s
1596  =  3800999 - 3799403  :  33.810580195s
1686  =  6249743 - 6248057  :  34.183678793s
1932  =  12464909 - 12462977  :  34.683651976s
2040  =  30291749 - 30289709  :  35.296022077s
2160  =  31641773 - 31639613  :  35.325773748s
2190  =  34808447 - 34806257  :  35.390646164s
2610  =  78199097 - 78196487  :  35.878632519s
2640  =  105072497 - 105069857  :  36.018381898s
2754  =  114949007 - 114946253  :  36.058571726s
2862  =  246225989 - 246223127  :  36.337844257s
2910  =  255910223 - 255907313  :  36.351442541s
2946  =  371348513 - 371345567  :  36.504506082s
3084  =  447523757 - 447520673  :  36.60250012s
3180  =  466558553 - 466555373  :  36.626346413s
3198  =  575713847 - 575710649  :  36.761306175s
3240  =  606802529 - 606799289  :  36.799984807s
3330  =  784554983 - 784551653  :  37.014430956s
3486  =  873632213 - 873628727  :  37.121270926s
3588  =  987417437 - 987413849  :  37.25618423s
3900  =  1123404923 - 1123401023  :  37.417362803s
3942  =  1196634239 - 1196630297  :  37.504784859s
4032  =  1247118179 - 1247114147  :  37.565187304s
4176  =  1964330609 - 1964326433  :  38.39652816s
4224  =  2055062753 - 2055058529  :  38.502515034s
4290  =  2160258917 - 2160254627  :  38.625633674s
4626  =  2773400633 - 2773396007  :  39.324109323s
5112  =  4278566879 - 4278561767  :  41.022658954s
n = 4294967295 real = 41.041491885s
$

Dla porównania: peterSO max 5112 w 41,04s kontra Coder max 4176 w 51,97s.

Koder: max | qp | 4176 q 1964330609 p 1964326433

Wydajność:

$ javac coder.java && java -Xmx1G coder
Total Primes upto 2147483646 = 105097564 in 11.61 s
(11 - 7) 4 (11.64 s)
<< SNIP >>
(1247118179 - 1247114147) 4032 (34.86 s)
(1964330609 - 1964326433) 4176 (51.97 s)
$

To wygląda bardzo imponująco.
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.