C, 2,2 * 10 ^ 177 programów
#define S(s)char*q=#s,n[]="#####################################################################################################";i;s
S(main(){while(n[i]==91)n[i++]=35;i==101?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
To nie jest idealne, ale całkiem dobre. Mam na myśli, że ma dokładnie 255
bajty długości i generuje programy o tej samej długości. Prawdopodobnie mógłbyś jeszcze trochę pobawić się, aby uzyskać więcej programów, ale na razie zostawię to tak, jak jest.
Program oparty jest na prostym języku C. Dodatkowo istnieje dość prosty algorytm liczenia, który zlicza wszystkie możliwe wartości tablicy char n
. Mamy tyle programów, ile permutacji ciągu n
.
Zakres znakowania jest ograniczony do zakresu od #
(= 35) do [
= (91). To dlatego, że nie chcę żadnego "
ani \
ciągu, ponieważ trzeba ich uciec.
Generowanie programu kończy się, gdy wszystkie wartości w tablicy char n
są [
. Następnie wyświetla prosty program zastępczy main(){}
, który sam nic nie wypisuje.
#define S(s) char *q = #s; /* have the source as a string */ \
char n[] = "#####################################################################################################"; \
int i; \
s /* the source itself */
S(main() {
while(n[i]=='[') /* clear out highest value, so next array element be incremented */
n[i++]='#';
i==101 /* end of array reached? output dummy program */
? q = "main(){}"
: n[i]++; /* count one up in the whole array */
printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)", n, q);
})
Jako demonstracja, że powinien on pracować Właśnie zmienił granice, więc tylko znaki ASCII-Code 35
i 36
są używane i tylko 4 elementy tablicy.
Powstałe programy to
% echo > delim; find -iname 'program_*.c' | xargs -n1 cat delim
#define S(s)char*q=#s,n[]="####";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="$###";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="#$##";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="$$##";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="##$#";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="$#$#";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="#$$#";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="$$$#";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="###$";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="$##$";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="#$#$";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="$$#$";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="##$$";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="$#$$";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="#$$$";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="$$$$";i;s
S(main(){while(n[i]==36)n[i++]=35;i==4?q="main(){}":n[i]++;printf("#define S(s)char*q=#s,n[]=\"%s\";i;s\nS(%s)",n,q);})
#define S(s)char*q=#s,n[]="####";i;s
S(main(){})
Daje to 2^4 + 1 = 17
różne programy.
Tak więc powyższy program generuje ((91-35)+1)^101 + 1 = 57^101 + 1 ~= 2.2 * 10^177
różne programy. Nie jestem całkowicie pewien, czy to się liczy, czy nawet moje obliczenia są prawidłowe
2^2048
lub3.2317e616
.