Zoptymalizuj Scralphabet


20

Scralphabet

Normalna torba płytek Scrabble zawiera następujące litery ( ?jest to pusta płytka, która może oznaczać każdą inną literę):

AAAAAAAAABBCCDDDDEEEEEEEEEEEEFFGGGHHIIIIIIIIIJKLLLLMMNNNNNNOOOOOOOOPPQRRRRRRSSSSTTTTTTUUUUVVWWXYYZ??

Litery mają następującą wartość:

{"A": 1,"B": 3,"C": 3,"D": 2,"E": 1,"F": 4,"G": 2,"H": 4,"I": 1,"J": 8,"K": 5,"L": 1,"M": 3,"N": 1,"O": 1,"P": 3,"Q": 10,"R": 1,"S": 1,"T": 1,"U": 1,"V": 4,"W": 4,"X": 8,"Y": 4,"Z": 10,"?": 0}

Biorąc pod uwagę normalną torbę płytek Scrabble, stwórz zestaw najwyżej punktowanych słów nieprzecinających się (tj. Pojedyncze słowa, nie na planszy Scrabble), biorąc pod uwagę następujące warunki:

  • Wynik dla każdego słowa to sum(letter_values) * length(word).
  • Możesz dołączyć maksymalnie jedno słowo zaczynające się na każdą literę alfabetu (czyli maksymalnie 26 słów).
  • Można uwzględnić tylko prawidłowe słowa Scrabble (z tego słownika ). Możesz odczytać słownik z pliku, zakodować go na sztywno (ugh) lub zeskrobać ze strony internetowej.
  • Nie musisz używać każdego kafelka, ale wszystkie nieużywane kafelki tworzą jedno słowo, punktowane w ten sam sposób, który odejmuje od wyniku.

Jeśli chcesz, twój kod może zaakceptować dwa dane wejściowe: zawartość torby jako ciąg znaków oraz wartości literowe w jakimś formacie podobnym do pytona dict(jak wyżej); alternatywnie możesz zakodować na stałe zawartość torby i wartości literowe. Powinien wyświetlać wyrazy w zestawie, odpowiadające im wyniki i całkowity wynik, w rozsądnym formacie.

Zestaw słów o najwyższej liczbie punktów wygrywa, a na pierwszym miejscu są remisy.


1
Czy ważny słownik słów Scrabble może być również zakodowany?
Lynn

2
A co jeśli mój program jest print"FOO18\nBAR15\nBAZ42\n...\n1523"?
Lynn


3
@Tim OP odnosi się do danych wejściowych.
Martin Ender

3
Wskazówka: bądź ostrożny z obsługą pełnego słownika Scrabble. Pracowałem nad rozwiązaniem w języku R i połączyłem słowa z ich wynikami, wykorzystałem całą dostępną pamięć i zawiesiłem komputer.
Alex A.,

Odpowiedzi:


15

C, 2765 (optymalna)

Edytować

Teraz wszystko w jednym pliku C. To po prostu znajduje wszystkie optymalne rozwiązania. Wszystkie muszą mieć 6 słów po 15 liter i jedno 10-literowe słowo składające się z 8 liter o wartości 1 i dwóch odstępów. W tym celu muszę załadować tylko ułamek słownika i nie muszę szukać 15-literowych słów ze spacjami. Kod jest prostym, wyczerpującym wyszukiwaniem w pierwszej kolejności.

#include <stdio.h>
#include <stdint.h>
#include <string.h>
struct w {
    struct lc { uint64_t hi,lo; } lc;
    char w[16];
} w15[6000], w10[40000];
int n15,n10;
struct lc pool = { 0x12122464612, 0x8624119232c4229 };
int pts[27] = {0,1,3,3,2,1,4,2,4,1,8,5,1,3,1,1,3,10,1,1,1,1,4,4,8,4,10};
int f[27],fs[26], w15c[27],w15l[27][6000];
int count(struct lc a, int l) { return (l < 16 ? a.lo << 4 : a.hi) >> 4*(l&15) & 15; }
int matches_val(uint64_t a, uint64_t b) {
    uint64_t mask = 0x1111111111111111ll;
    return !((a - b ^ a ^ b) & mask);
}
int matches(struct lc all, struct lc a) { return matches_val(all.hi,a.hi) && matches_val(all.lo,a.lo); }
int picks[10];
void try(struct lc cur, int used, int level) {
    int c, i, must;
    if (level == 6) {
    for (i = 0; i<27; i++) if (count(cur, i) && pts[i]>1) return;
    for (i = 0; i < n10; i++) if(!(used & (1 << (w10[i].w[0] & 31))) && matches(w10[i].lc, cur)) {
        for (c = 0; c<level; c++) printf("%s ",w15[picks[c]].w);
        printf("%s\n",w10[i].w);
    }
    return;
    }
    for (i = 0; i < 26;i++) if (count(cur,fs[i])) break;
    must = fs[i];
    for (c = 0; c < w15c[must]; c++) { i = w15l[must][c]; if(!(used & (1 << (w15[i].w[0] & 31))) && matches(cur, w15[i].lc)) {
    struct lc b = { cur.hi - w15[i].lc.hi, cur.lo - w15[i].lc.lo };
    picks[level] = i;
    try(b, used + (1 << (w15[i].w[0] & 31)), level+1);
    }}
}
int cmpfs(int *a, int *b){return f[*a]-f[*b];}
void ins(struct w*w, char *s, int c) {
    int i;
    strcpy(w->w,s);
    for (;*s;s++)
    if (*s&16) w->lc.hi += 1ll << 4*(*s&15); else w->lc.lo += 1ll << 4*(*s&15) - 4;
    if (c) for (i = 0; i < 27;i++) if (count(w->lc,i)) f[i]++, w15l[i][w15c[i]++] = w-w15;
}
int main() {
    int i;
    char s[20];
    while(scanf("%s ",s)>0) {
    if (strlen(s) == 15) ins(w15 + n15++,s,1);
    if (strlen(s) == 10) ins(w10 + n10++,s,0);
    }
    for (i = 0; i < 26;i++) fs[i] = i+1;
    qsort(fs, 26, sizeof(int), cmpfs);
    try(pool, 0, 0);
}

Stosowanie:

$time ./scrab <sowpods.txt
cc -O3    scrab.c   -o scrab
JUXTAPOSITIONAL DEMISEMIQUAVERS ACKNOWLEDGEABLY WEATHERPROOFING CONVEYORIZATION FEATHERBEDDINGS LAURUSTINE
JUXTAPOSITIONAL DEMISEMIQUAVERS ACKNOWLEDGEABLY WEATHERPROOFING CONVEYORIZATION FEATHERBEDDINGS LUXURIATED
JUXTAPOSITIONAL DEMISEMIQUAVERS ACKNOWLEDGEABLY WEATHERPROOFING CONVEYORIZATION FEATHERBEDDINGS LUXURIATES
JUXTAPOSITIONAL DEMISEMIQUAVERS ACKNOWLEDGEABLY WEATHERPROOFING CONVEYORIZATION FEATHERBEDDINGS ULTRAQUIET
JUXTAPOSITIONAL DEMISEMIQUAVERS ACKNOWLEDGEABLY WEATHERPROOFING CONVEYORIZATION FEATHERBEDDINGS UTRICULATE
JUXTAPOSITIONAL DEMISEMIQUAVERS WEATHERPROOFING ACKNOWLEDGEABLY CONVEYORIZATION FEATHERBEDDINGS LAURUSTINE
JUXTAPOSITIONAL DEMISEMIQUAVERS WEATHERPROOFING ACKNOWLEDGEABLY CONVEYORIZATION FEATHERBEDDINGS LUXURIATED
JUXTAPOSITIONAL DEMISEMIQUAVERS WEATHERPROOFING ACKNOWLEDGEABLY CONVEYORIZATION FEATHERBEDDINGS LUXURIATES
JUXTAPOSITIONAL DEMISEMIQUAVERS WEATHERPROOFING ACKNOWLEDGEABLY CONVEYORIZATION FEATHERBEDDINGS ULTRAQUIET
JUXTAPOSITIONAL DEMISEMIQUAVERS WEATHERPROOFING ACKNOWLEDGEABLY CONVEYORIZATION FEATHERBEDDINGS UTRICULATE
OVERADJUSTMENTS QUODLIBETARIANS ACKNOWLEDGEABLY WEATHERPROOFING EXEMPLIFICATIVE HYDROGENIZATION RUBIACEOUS
OVERADJUSTMENTS QUODLIBETARIANS WEATHERPROOFING ACKNOWLEDGEABLY EXEMPLIFICATIVE HYDROGENIZATION RUBIACEOUS

real    0m1.754s
user    0m1.753s
sys 0m0.000s

Uwaga: każde rozwiązanie jest drukowane dwukrotnie, ponieważ podczas dodawania 15-literowego słowa „W” tworzone są 2 zamówienia, ponieważ istnieją 2 „W” płytki.

Pierwsze rozwiązanie z podziałem punktowym:

JUXTAPOSITIONAL 465
DEMISEMIQUAVERS 480
ACKNOWLEDGEABLY 465
WEATHERPROOFING 405
CONVEYORIZATION 480
FEATHERBEDDINGS 390
LAURUSTINE (LAURU?TI?E) 80
no tiles left

Edycja: wyjaśnienie

Co umożliwia przeszukiwanie całej przestrzeni? Dodając nowe słowo, biorę pod uwagę tylko te słowa, które mają najrzadszą pozostałą literę. W każdym razie ta litera musi zawierać jakieś słowo (i 15-literowe słowo, ponieważ będzie to litera o wartości innej niż 1, choć tego nie sprawdzam). Zacznę więc od słów, J, Q, W, W, X, Zktóre się liczą 50, 100, 100, 100, 200, 500. Na niższych poziomach jestem bardziej odcięty, ponieważ niektóre słowa są eliminowane przez brak liter. Szerokość drzewa wyszukiwania na każdym poziomie:

0: 1
1: 49
2: 3046
3: 102560
4: 724040
5: 803959
6: 3469

Oczywiście dużą część odcięcia uzyskuje się, nie sprawdzając nieoptymalnych rozwiązań (puste 15-literowe słowa lub krótsze słowa). Na szczęście dzięki temu słownikowi można uzyskać rozwiązanie 2765 (ale było blisko, tylko 2 kombinacje 15-literowych słów dają rozsądne resztki). Z drugiej strony łatwo jest zmodyfikować kod, aby znaleźć kombinacje o niższej punktacji, w których nie wszystkie 10 pozostałych liter ma 1-krotną wartość, choć trudniej byłoby udowodnić, że byłoby to optymalne rozwiązanie.

Również kod pokazuje klasyczny przypadek przedwczesnej optymalizacji. Ta wersja matchesfunkcji spowalnia kod tylko o 30%:

int matches(struct lc all, struct lc a) {
    int i;
    for (i = 1; i < 27; i++) if (count(a, i) > count(all, i)) return 0;
    return 1;
}

Wymyśliłem nawet, jak sprawić, by porównanie magii równoległych bitów było jeszcze krótsze niż w moim oryginalnym kodzie (w tym przypadku nie można użyć najwyższego skrawka, ale to nie jest problem, ponieważ potrzebuję tylko 26 z 32 skórek):

int matches_val(uint64_t a, uint64_t b) {
    uint64_t mask = 0x1111111111111111ll;
    return !((a - b ^ a ^ b) & mask);
}

Ale daje zerową przewagę.

Edytować

Pisząc powyższe wyjaśnienie, zdałem sobie sprawę, że większość czasu spędzam na skanowaniu listy słów pod kątem tych, które zawierają określoną literę, która nie jest w matchesfunkcji. Obliczanie list z góry dało 10-krotne przyspieszenie.


Ładny! Pytanie, skąd wiesz, że „[Optymalne rozwiązania] wszystkie muszą mieć 6 słów po 15 liter i jedno 10-literowe słowo składające się z 8 liter o wartości 1 i dwóch spacji.”?
Claudiu

@Claudiu, Każda litera powinna uzyskać maksymalny możliwy mnożnik, który wynosi 15, ponieważ jest to maksymalna długość słowa. Nie można podać wszystkich słów o tej długości, ponieważ całkowitej liczby liter nie można podzielić przez 15. Dlatego niektóre litery będą miały mniejszy mnożnik. Lepiej jest, aby były najtańszymi literami (które są spacjami i jednymi). Ostatnią rzeczą jest, dlaczego posiadanie dokładnie jednego słowa krótszego niż 15, a nie na przykład (5x15, 14, 11), jest lepsze, ale można to również udowodnić, że zawsze ma niższy wynik.
nutki

dobrze, ponieważ jest to najwyższy możliwy wynik, opublikowany jako pierwszy, zamierzam to zaakceptować. dobra robota (wszyscy)!
sirpercival

6

Python 2, wynik: 1840 2162

Ten program najpierw znajduje najlepsze słowo punktacji dostępne dla danego kafelka (bez użycia symboli wieloznacznych), a następnie podejmuje 10000 prób włączenia losowych słów, które spełniają ograniczenia unikalnej pierwszej postaci i mają dostępne kafelki. Przy obecnych stałych program działa na moim komputerze 27 sekund. Zastosowanie większych stałych prawdopodobnie zapewniłoby wyższą kombinację słów.

AKTUALIZACJA: Teraz wykorzystuje 2-stopniowy algorytm wyboru, więc wyszukuje najlepsze z 50 słów na każdym etapie wyboru. Punktacja karna jest teraz używana również w algorytmie oceny.

from random import *

tilelist = ('AAAAAAAAABBCCDDDDEEEEEEEEEEEEFFGGGHHIIIIIIIIIJKLLLLMM'
        'NNNNNNOOOOOOOOPPQRRRRRRSSSSTTTTTTUUUUVVWWXYYZ??')
maintiles = dict((t, tilelist.count(t)) for t in set(tilelist))
value = {"A": 1,"B": 3,"C": 3,"D": 2,"E": 1,"F": 4,"G": 2,"H": 4,"I": 1,
        "J": 8,"K": 5,"L": 1,"M": 3,"N": 1,"O": 1,"P": 3,"Q": 10,"R": 1,
        "S": 1,"T": 1,"U": 1,"V": 4,"W": 4,"X": 8,"Y": 4,"Z": 10,"?": 0}
words = open('words.txt', 'rt').read().split()

def sumpoints(word):
    return len(word) * sum(value[c] for c in word)

ranked = sorted((sumpoints(w),w) for w in words)[::-1]
for points,word in ranked:
    if all(word.count(ch) <= maintiles[ch] for ch in word):
        firstword = word
        break

def findwordset(first):
    tiles = maintiles.copy()
    startletter = set(tilelist) - {'?'}
    startletter.discard(first[0])
    result = [ (first, sumpoints(first)) ]
    thistotal = sumpoints(first)
    for ch in first:
        tiles[ch] -= 1
    for i in range(30):
        best = None
        for word in sample(words, 50):
            if word[0] in startletter:
                if all(word.count(ch) <= tiles[ch] for ch in word):
                    points = sumpoints(word)
                    if best == None or points > best:
                        best, bestword = points, word
        if best:
            thistotal += best
            result.append( (bestword,best) )
            startletter.discard(bestword[0])
            for ch in bestword:
                tiles[ch] -= 1
    penaltyword = ''.join(c*n for c,n in tiles.items())
    penalty = sumpoints(penaltyword)
    return thistotal - penalty, result, tiles

best = None
for attempt in range(10000):
    wordset = findwordset(firstword)
    if best == None or wordset > best:
        best = wordset

total, result, tiles = best
penaltyword = ''.join(c*n for c,n in tiles.items())
penalty = sumpoints(penaltyword)
for word,points in result:
    print '%20s%6s' % (word, points)
print 'Remaining word "%s" penalty = %s' % (penaltyword, -penalty)
print 'Total score = %s' % total

Podaję tutaj najlepszy z kilku przebiegów:

$ python s.py 
 OXYPHENBUTAZONE   615
   LIQUEFACTIONS   351
  DETERMINATIVES   280
   FAMILIARISERS   234
     JUNKETEERED   253
      WOODPIGEON   170
           GAYAL    45
         CLAUGHT    91
       BRIARWOOD   135
Remaining word "V??" penalty = -12
Total score = 2162

Pamiętaj, że nie używam dzikich kart i płacę większą karę (ze względu na długość słowa). Przyszłe ulepszenie może obejmować użycie symboli wieloznacznych.


1
Ważna jest długość słów: „Wynik dla każdego słowa to suma (wartości_literowe) * długość (słowo)”.
Logic Knight

Nie używa punktacji Scrabble? Aargh.
Peter Taylor

Łał. Najlepsza kopalnia, jaką do tej pory znalazłem, to wynik 11371. Jeśli pomnożysz swój wynik przez długość (97), otrzymasz 209714.
Tim

@Tim to słowo po słowie, a nie łącznie.
sirpercival

@sirpercival tak, ale 615 * 15 + 351 * 13 ... to to samo, prawda?
Tim

6

Symulowane wyżarzanie (wynik 2246)

180     ADDITIVELY
338     ERYTHROPHOBIA
345     FLAGELLOMANIACS
435     INTERSUBJECTIVE
171     KOWTOWERS
390     QUADRINGENARIES
250     WEAPONIZED
200     XENOGAMOUS
-9      for blank used as S
-9      for blank used as W
-18     FTU unused
Total score: 2246

Niestety jest to niedeterministyczne. Spróbuję to naprawić i znajdę deterministyczne ziarno, które daje lepszą wartość.

import java.io.*;
import java.util.*;

public class PPCG50219 {
    // Plus two wildcards
    private static String CHAR_FREQ  = "9224<232911426821646422121";
    private static String CHAR_VALUE = "1332142418513113:11114484:";

    private static List<List<String>> WORDS;

    public static void main(String[] args) {
        init();

        Random rnd = new Random(1);
        FeasibleSolution initial = new FeasibleSolution();
        List<List<String>> shuffledByLetter = new ArrayList<List<String>>(WORDS);
        Collections.shuffle(shuffledByLetter,  rnd);
        for (List<String> list : shuffledByLetter) {
            Collections.shuffle(list, rnd);
            for (String word : list) {
                if (initial.canUse(word)) {
                    initial.use(word);
                    break;
                }
            }
        }

        FeasibleSolution best = anneal(initial, rnd);
        System.out.println(best.toStringDetailed());
    }

    private static void init() {
        try {
            WORDS = new ArrayList<List<String>>(26);
            for (int i = 0; i < 26; i++) WORDS.add(new ArrayList<String>());

            // Take dictionary from stdin with fallback to hard-coded path.
            BufferedReader br = new BufferedReader(new InputStreamReader(System.in, "ISO-8859-1"));
            if (!br.ready()) {
                br.close();
                br = new BufferedReader(new InputStreamReader(new FileInputStream("/home/pjt33/notes/dict/sowpods"), "ISO-8859-1"));
            }

            String line;
            FeasibleSolution soln = new FeasibleSolution();
            while ((line = br.readLine()) != null) WORDS.get(line.charAt(0) - 'A').add(line);
            br.close();
        }
        catch (IOException ioe) {
            throw new RuntimeException(ioe);
        }
    }

    public static FeasibleSolution anneal(FeasibleSolution feasibleSolution, Random rnd)
    {
        //Random rnd = new Random();

        FeasibleSolution best = feasibleSolution;
        int bestScore = best.score();
        double temperature = bestScore / 10;

        FeasibleSolution current = best;
        int currentScore = bestScore;

        for (int i = 0; i < 1024; i++)
        {
            // Try out some random changes, and then adjust the temperature according to the results.
            FeasibleSolution bestAtT = current;
            for (int j = 0; j < 256; j++)
            {
                FeasibleSolution neighbour = current.randomNeighbour(rnd);
                int score = neighbour.score();

                // Use a simple threshold rather than a Boltzmann probability
                if (score >= currentScore - temperature)
                {
                    current = neighbour;
                    currentScore = score;
                    temperature *= 0.95;
                }
                if (score > bestScore)
                {
                    best = neighbour;
                    bestScore = score;
                }
            }

            if (current == bestAtT) temperature *= 1.01;
            if (temperature < 1E-6 * bestScore) break;
        }

        return best;
    }

    static class FeasibleSolution {
        private final String[] words;
        private int blanksUsed;
        private final int[] counts;

        private FeasibleSolution(String[] words) {
            this.words = words;

            counts = new int[26];
            for (String word : words) {
                if (word == null) continue;
                for (char ch : word.toCharArray()) counts[ch - 'A']++;
            }
            for (int i = 0; i < 26; i++) {
                int limit = CHAR_FREQ.charAt(i) - '0';
                if (counts[i] > limit) blanksUsed += counts[i] - limit;
            }
            if (blanksUsed > 2) throw new IllegalArgumentException("Required " + blanksUsed + " blanks");
        }

        public FeasibleSolution() {
            this(new String[26]);
        }

        public FeasibleSolution(FeasibleSolution copy) {
            this(copy.words.clone());
        }

        public boolean canUse(String word) {
            int offset = word.charAt(0) - 'A';

            String current = clear(offset);
            boolean rv = set(offset, word);

            clear(offset);
            if (!set(offset, current)) throw new IllegalStateException();

            return rv;
        }

        public void use(String word) {
            int offset = word.charAt(0) - 'A';
            clear(offset);
            if (!set(offset, word)) throw new IllegalArgumentException();
        }

        private boolean set(int offset, String word) {
            if (words[offset] != null) throw new IllegalStateException();

            if (word != null) {
                for (char ch : word.toCharArray()) {
                    int limit = CHAR_FREQ.charAt(ch - 'A') - '0';
                    counts[ch - 'A']++;
                    if (counts[ch - 'A'] > limit) blanksUsed++;
                }
            }

            words[offset] = word;
            return blanksUsed <= 2;
        }

        private String clear(int offset) {
            String word = words[offset];
            if (word != null) {
                for (char ch : word.toCharArray()) {
                    int limit = CHAR_FREQ.charAt(ch - 'A') - '0';
                    if (counts[ch - 'A'] > limit) blanksUsed--;
                    counts[ch - 'A']--;
                }
            }

            words[offset] = null;
            return word;
        }

        public int score() {
            int score = 0;

            List<List<Integer>> lengths = new ArrayList<List<Integer>>();
            for (int i = 0; i < 26; i++) lengths.add(new ArrayList<Integer>());
            int unused = 100;

            for (String word : words) {
                if (word == null) continue;
                for (char ch : word.toCharArray()) lengths.get(ch - 'A').add(word.length());
                unused -= word.length();
            }

            for (int i = 0; i < 26; i++) {
                int limit = CHAR_FREQ.charAt(i) - '0';
                int off = 0;
                List<Integer> l = lengths.get(i);
                if (l.size() > limit) {
                    off = l.size() - limit;
                    Collections.sort(l);
                }
                else if (l.size() < limit) {
                    int surplus = limit - l.size();
                    l.add(-surplus * unused);
                }
                for (; off < l.size(); off++) score += l.get(off) * (CHAR_VALUE.charAt(i) - '0');
            }
            return score;
        }

        public FeasibleSolution randomNeighbour(Random rnd) {
            FeasibleSolution soln = new FeasibleSolution(this);

            // Shake things up.
            List<Integer> used = new ArrayList<Integer>();
            int totalCount = 0;
            for (int i = 0; i < words.length; i++) {
                if (words[i] == null) continue;
                used.add(i);
                totalCount += words[i].length();
            }
            if (totalCount > 50) {
                int offset = used.get(rnd.nextInt(used.size()));
                soln.clear(offset);
            }

            // TODO We can probably get better results by biasing the shuffle.
            List<List<String>> shuffledByLetter = new ArrayList<List<String>>(WORDS);
            String theBitThatMatters = Arrays.toString(counts);
            Collections.shuffle(shuffledByLetter,  rnd);
            for (List<String> list : shuffledByLetter) {
                Collections.shuffle(list, rnd);
                for (String word : list) {
                    if (word.equals(soln.words[word.charAt(0) - 'A'])) continue;
                    if (soln.canUse(word)) {
                        soln.use(word);
                        if (!theBitThatMatters.equals(Arrays.toString(soln.counts))) return soln;
                    }
                }

                // To avoid getting trapped in a local oscillation.
                int off = list.get(0).charAt(0) - 'A';
                if (soln.words[off] != null) {
                    soln.clear(off);
                    return soln;
                }
            }

            throw new RuntimeException("This really shouldn't be reachable");
        }

        @Override
        public String toString() {
            StringBuilder sb = new StringBuilder();
            for (String word : words) {
                if (word == null) continue;
                if (sb.length() > 0) sb.append(", ");
                sb.append(word);
            }

            return sb.toString();
        }

        private static int wordScore(String word) {
            int wordScore = 0;
            for (char ch : word.toCharArray()) {
                if (ch != '?') wordScore += (CHAR_VALUE.charAt(ch - 'A') - '0');
            }
            return wordScore * word.length();
        }

        public String toStringDetailed() {
            int score = 0;

            List<List<Integer>> lengths = new ArrayList<List<Integer>>();
            for (int i = 0; i < 26; i++) lengths.add(new ArrayList<Integer>());
            int unused = 100;

            StringBuilder surplusChars = new StringBuilder();
            int unusedBlanks = 2;

            StringBuilder sb = new StringBuilder();
            for (String word : words) {
                if (word == null) continue;
                for (char ch : word.toCharArray()) lengths.get(ch - 'A').add(word.length());
                unused -= word.length();
                sb.append(wordScore(word)).append("\t").append(word).append("\n");
            }

            for (int i = 0; i < 26; i++) {
                int limit = CHAR_FREQ.charAt(i) - '0';
                int off = 0;
                List<Integer> l = lengths.get(i);
                if (l.size() > limit) {
                    off = l.size() - limit;
                    unusedBlanks -= off;
                    Collections.sort(l);
                }
                while (l.size() < limit) {
                    surplusChars.append((char)('A' + i));
                    l.add(-unused);
                }
                for (int j = 0; j < off; j++) sb.append(-l.get(j)).append("\tfor blank used as ").append((char)('A' + i)).append("\n");
                for (; off < l.size(); off++) score += l.get(off) * (CHAR_VALUE.charAt(i) - '0');
            }

            while (unusedBlanks > 0) {
                surplusChars.append('?');
                unusedBlanks--;
            }
            sb.append(-wordScore(surplusChars.toString())).append("\t").append(surplusChars).append(" unused\n");

            sb.append("Total score: ").append(score());
            return sb.toString();
        }
    }
}

4

Python, wynik 2638 2675 2676 2689 2699 2717

Wynik:

OXYPHENBUTAZONE for 615
MICROEARTHQUAKE for 525
FLAVOURDYNAMICS for 435
ADJUSTABILITIES for 375
PREINTERVIEWING for 360
WATERFLOODINGS for 308
EAGLE?OOD? for 100
Left-over word: E
2717

Kod:

import time
from multiprocessing import Pool

start_tiles = "AAAAAAAAABBCCDDDDEEEEEEEEEEEEFFGGGHHIIIIIIIIIJKLLLLMMNNNNNNOOOOOOOOPPQRRRRRRSSSSTTTTTTUUUUVVWWXYYZ??"
start_tiles = {l: start_tiles.count(l) for l in set(start_tiles)}
values = {"A": 1,"B": 3,"C": 3,"D": 2,"E": 1,"F": 4,"G": 2,"H": 4,"I": 1,"J": 8,"K": 5,"L": 1,"M": 3,"N": 1,"O": 1,"P": 3,"Q": 10,"R": 1,"S": 1,"T": 1,"U": 1,"V": 4,"W": 4,"X": 8,"Y": 4,"Z": 10,"?": 0}
with open("sowpods.txt") as f:
    full_dictionary = list(l.strip() for l in f if l.strip())

def num_wilds_needed(word, tiles):
    return sum(max(0, word.count(l) - tiles[l]) for l in word)

def word_is_possible(word, tiles):
    # never replace 1st letter with wild, for simplicity
    if tiles[word[0]] <= 0:
        return False

    return num_wilds_needed(word, tiles) <= tiles['?']

def word_score(word):
    return sum(values[c] for c in word) * len(word)

def final_score(words, tiles_left, print_leftover=False):
    left_over_word = ""
    for tile, counts in tiles_left.iteritems():
        left_over_word += tile * counts
    if print_leftover:
        print "Left-over word: %s" % (left_over_word,)
    return sum(word_score(word) for word in words) - word_score(left_over_word)

def filter_dictionary(dictionary, tiles_left, start_letters):
    return [word for word in dictionary
            if word[0] in start_letters and word_is_possible(word, tiles_left)]

def pick_word(next_word, start_letters, tiles_left, dictionary):
    if not word_is_possible(next_word, tiles_left):
        raise ValueError("Using word that is impossible: %s" % (next_word,))

    next_letters = set(start_letters)
    next_letters.remove(next_word[0])
    next_tiles = dict(tiles_left)
    for c in next_word:
        next_tiles[c] -= 1

    next_dictionary = filter_dictionary(dictionary, next_tiles, next_letters)

    return next_letters, next_tiles, next_dictionary

class FakeResult:
    def __init__(self, value):
        self.value = value
    def get(self, timeout=None):
        return self.value

class FakePool:
    def apply_async(self, f, args):
        res = f(*args)
        return FakeResult(res)

def proc_next_word(next_word,
                   start_letters, tiles_left, filtered_sorted_dictionary,
                   depth, picks, prefix):
    score = word_score(next_word)
    next_letters, next_tiles, next_dictionary = pick_word(
        next_word, start_letters, tiles_left, filtered_sorted_dictionary)

    if len(prefix) / 2 < 5:
        print "%sDepth %d: ?, %s for %d, %d possible words left" % (
            prefix, len(prefix) / 2, next_word, score, len(filtered_sorted_dictionary))

    next_words, next_score = search(FakePool(), next_letters, next_tiles, next_dictionary,
                                    depth-1, picks, prefix + "  ")

    if len(prefix) / 2 < 5:
        print "%sDepth %d: %d, %s for %d" % (
            prefix, len(prefix) / 2, score + next_score, next_word, score)

    return [next_word] + next_words, score + next_score

def wildify(word, tiles_left):
    # replace missing letters with wilds
    while True:
        for c in word:
            if tiles_left[c] < word.count(c):
                word = word[0] + word[1:].replace(c, '?',  word.count(c) - tiles_left[c])
                break
        else:
            break

    return word

def search(pool, start_letters, tiles_left, filtered_sorted_dictionary, depth, picks, prefix=""):
    if not filtered_sorted_dictionary:
        # no words left - penalize for tiles left
        return [], final_score([], tiles_left)

    if depth == 0:
        raise ValueError("Hit depth 0")

    if tiles_left['?'] > 0:
        # proc top few and re-calculate score based on wildcarding
        best_word_candidates = [wildify(w, tiles_left) for w in filtered_sorted_dictionary[:10000]]
        best_word_candidates.sort(key=word_score, reverse=True)
    else:
        # no wildification needed
        best_word_candidates = filtered_sorted_dictionary

    best_words = best_word_candidates[:picks]
    if depth == 1:
        # only look at 1 word since depth 0 will do nothing
        best_words = [best_words[0]]

    results = [pool.apply_async(proc_next_word, (next_word,
                                                 start_letters, tiles_left, filtered_sorted_dictionary,
                                                 depth, picks, prefix))
               for next_word in best_words]
    results = [result.get() for result in results]

    return max(results, key=lambda (words, result): result)

if __name__ == "__main__":
    start_letters = set("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
    tiles_left = dict(start_tiles)
    print "Preparing word list..."
    dictionary = filter_dictionary(full_dictionary, tiles_left, start_letters)
    dictionary.sort(key=word_score, reverse=True)
    print "Starting search..."
    pool = Pool(8)
    words, _ = search(pool, start_letters, tiles_left, dictionary, 666, 5)

    for word in words:
        for c in word:
            if tiles_left[c] <= 0:
                raise ValueError("Invalid word list")
            tiles_left[c] -= 1

    print
    print "\n".join(("%s for %s" % (word, word_score(word)) for word in words))
    print final_score(words, tiles_left, True)

Wyjaśnienie:

Głębokie wyszukiwanie, które przeszukuje całe drzewo, wybierając najlepsze picksnajlepsze słowa na każdym etapie.

Na początku sortuję całą listę słów według wyniku. Po wybraniu każdego słowa, do następnej iteracji odfiltrowuję wszystkie słowa, które nie są już możliwe, zachowując kolejność, więc nie muszę sortować listy na każdym kroku. Aby poradzić sobie z symbolami wieloznacznymi, jeśli istnieje możliwość, że potrzebna jest karta wieloznaczna, wybieram 10000 najlepszych kandydatów, w razie potrzeby zastępuję brakujące litery symbolami wieloznacznymi i ponownie sortuję na podstawie nowych (niższych) wyników.

To wyjście jest dla picks=5 i zabrał 8m01sdo pracy na moim 8-rdzeniowej maszynie.


3

Java 8, wynik 2641 2681

Program zaczyna się od 40 najlepszych słów. Dla każdego słowa wyszukuje 40 najlepszych słów do przejścia. Spośród 1600 kombinacji program przyjmuje najlepsze 40. Dla każdej kombinacji znajduje się 40 najlepszych słów i cykl się powtarza.

Gdy pozostało tylko kilka płytek, pozostałe litery są łączone z dwoma odstępami dla ostatniego słowa.

Aktualizacja

Podniosłem próg do 50 najlepszych słów. Ponadto każda kombinacja dodaje tylko słowa, które są mniejsze niż te już obecne. Zapobiega to wielokrotnym permutacjom tej samej grupy.

OXYPHENBUTAZONE: 615
MICROEARTHQUAKE: 525
INTERSUBJECTIVE: 435
DAFFADOWNDILLY: 406
PREINTERVIEWING: 360
AUTOALLOGAMIES: 238
GOODSIRES: 99
?A?: 3             (ZAX)
---
Total: 2681

Program:

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;

public class Scrabble {

    static final int[] scores = new int[]{1, 3, 3, 2, 1, 4, 2, 4, 1, 8, 5, 1, 3, 1, 1, 3, 10, 1, 1, 1, 1, 4, 4, 8, 4, 10, 0};
    static final int[] freqs = new int[]{9, 2, 2, 4, 12, 2, 3, 2, 9, 1, 1, 4, 2, 6, 8, 2, 1, 6, 4, 6, 4, 2, 2, 1, 2, 1, 2};

    static final int MAX = 50;

    public static void main(String[] args) throws IOException {
        List<String> words = Files.readAllLines(new File("C:/Users/Ypnypn/scrabble.txt").toPath());
        words.sort((s, t) -> score(t) - score(s));
        words.removeIf(w -> !works(w));

        List<List<String>> last = words.stream().map(Arrays::asList).collect(Collectors.toList()),
                finalList = new ArrayList();

        for (int i = 0; i < 10; i++) {
            List<List<String>> next = new ArrayList();
            for (int j = 0; j < MAX && j < last.size(); j++) {
                List<String> group = last.get(j);
                Object[] thirds = words.stream().filter(word -> workTogether(group, word) && least(word, group)).toArray();
                for (int k = 0; k < MAX && k < thirds.length; k++) {
                    List<String> newList = new ArrayList(group);
                    newList.add((String) thirds[k]);
                    next.add(newList);
                }
            }
            last = next;
            last.sort((s, t) -> t.stream().mapToInt(Scrabble::score).sum()
                                - s.stream().mapToInt(Scrabble::score).sum());
            for (List<String> l : last) {
                if (l.stream().mapToInt(String::length).sum() > 90) {
                    finalList.add(l);
                }
            }
        }
        finalList.forEach(g -> {
            List<Integer> chars = new ArrayList();
            int[] counts = new int[26];
            g.forEach(str -> str.chars().forEach(c -> counts[c - 'A']++));
            for (int i = 0; i < 26; i++) {
                while (counts[i] < freqs[i]) {
                    chars.add('A' + i);
                    counts[i]++;
                }
            }
            String end = words.stream()
                    .filter(w -> w.length() == chars.size() + 2)
                    .filter(w -> g.stream().noneMatch(s -> s.charAt(0) == w.charAt(0)))
                    .filter(w -> {
                        List<Integer> copy = new ArrayList(chars);
                        int _1 = 0, _2 = 0;
                        for (char c : w.toCharArray()) {
                            if (copy.contains((int) c)) {
                                copy.remove((Integer) (int) c);
                            } else if (_1 == 0) {
                                _1 = c;
                            } else if (_2 == 0) {
                                _2 = c;
                            } else {
                                return false;
                            }
                        }
                        return true;
                    }).findAny().orElse("");
            if (end.equals("")) {
                return;
            }
            char[] arr = end.toCharArray();
            for (int i = 0; i < arr.length; i++) {
                if (chars.contains((int) arr[i])) {
                    chars.remove((Integer) (int) arr[i]);
                } else {
                    arr[i] = '?';
                }
            }
            g.add(new String(arr));
        });

        finalList.removeIf(g -> g.stream().mapToInt(String::length).sum() < 100);
        finalList.sort((s, t) -> t.stream().mapToInt(Scrabble::score).sum()
                                 - s.stream().mapToInt(Scrabble::score).sum());
        List<String> answer = finalList.get(0);
        for (String str : answer) {
            System.out.print(str + ": " + score(str));
            if (str.contains("?")) {
                String actual = words.stream().filter(s -> s.matches("^" + str.replace('?', '.') + "$")).findAny().get();
                System.out.print("             (" + actual + ")");
            }
            System.out.println();
        }
        System.out.println("---");
        System.out.println("Total: " + answer.stream().mapToInt(Scrabble::score).sum());
    }

    static boolean works(String str) {
        int[] counts = new int[26];
        for (char c : str.toCharArray()) {
            counts[c - 'A']++;
        }
        for (int i = 0; i < 26; i++) {
            if (counts[i] > freqs[i]) {
                return false;
            }
        }
        return true;
    }

    static boolean workTogether(List<String> strs, String str) {
        if (strs.stream().anyMatch(s -> s.charAt(0) == str.charAt(0))) {
            return false;
        }
        int[] counts = new int[26];
        strs.stream().forEach(s -> s.chars().forEach(c -> counts[c - 'A']++));
        str.chars().forEach(c -> counts[c - 'A']++);
        for (int i = 0; i < 26; i++) {
            if (counts[i] > freqs[i]) {
                return false;
            }
        }
        return true;
    }

    static boolean least(String str, List<String> strs) {
        int score = score(str);
        return strs.stream().allMatch(s -> score(s) >= score);
    }

    static int score(String word) {
        int score = 0;
        for (char c : word.toCharArray()) {
            if (c != '?') {
                score += scores[c - 'A'];
            }
        }
        return score * word.length();
    }
}

2

Perl, wynik: 2655 2630

#!perl -l
%p = qw{A 1 B 3 C 3 D 2 E 1 F 4 G 2 H 4 I 1 J 8 K 5 L 1 M 3 N 1 O 1 P 3 Q 10 R 1 S 1 T 1 U 1 V 4 W 4 X 8 Y 4 Z 10 x 0};
/[A-Z]+/,push @R,$& for <>;
@R = sort{length($b)<=>length($a)}@R;
for(@R) {push@W,$_;push@W,"$`x$'" while /./g;push@O,($_)x(1+length)}
$l = "AAAAAAAAABBCCDDDDEEEEEEEEEEEEFFGGGHHIIIIIIIIIJKLLLLMMNNNNNNOOOOOOOOPPQRRRRRRSSSSTTTTTTUUUUVVWWXYYZxx";
@S = map {$r='';for$x(A..Z,'x'){$r.="${x}{".(1*s/$x//g).",}"};"^$r\$"} map{"$_"}@W;
sub score{$r=0;$r+=$p{$_}for split'',$rr=pop;$r*length$rr}
@X = map{score$_}@W;
$f = 'x';
for(;;) {
$best = -1; $besti = 0;
for ($i=0;$i<@S;$i++) {
    next if $X[$i] < $best;
    if ($O[$i]!~/^[$f]/ && $l=~$S[$i]) {
    $best = $X[$i];
    $besti = $i;
    }
}
if($best < 0){
    $ls = score$l;
    print "left: $l (-$ls)";
    $tot -= $ls;
    print "total: $tot";
    exit;
}
$l=~s/$_// for $W[$besti]=~/./g;
$O[$besti]=~/./; $f .= $&;
print "$W[$besti]/$O[$besti] ($X[$besti])";
$tot += $X[$besti];
}

Posługiwać się:

$ perl ./scrab.pl <~/sowpods.txt
OXYPHENBUTAZONE/OXYPHENBUTAZONE (615)
MICROEARTHQUAKE/MICROEARTHQUAKE (525)
NONOBJECTIVISMS/NONOBJECTIVISMS (465)
DAFFADOWNDILLY/DAFFADOWNDILLY (406)
PREINTERVIEWIxG/PREINTERVIEWING (345)
LITURGIOLOGxSTS/LITURGIOLOGISTS (240)
URDEE/URDEE (30)
EE/EE (4)
AA/AA (4)
left: AA (-4)
total: 2630

Użycie pustych miejsc nie daje tak wiele, a znacznie spowalnia wykonanie:

$ perl ./scrab.pl <~/sowpods.txt 
OXYPHENBUTAZONE/OXYPHENBUTAZONE (615)
MICROEARTHQUAKE/MICROEARTHQUAKE (525)
NONOBJECTIVISMS/NONOBJECTIVISMS (465)
DAFFADOWNDILLY/DAFFADOWNDILLY (406)
PREINTERVIEWED/PREINTERVIEWED (322)
LITURGIOLOGISTS/LITURGIOLOGISTS (255)
RUGAE/RUGAE (30)
EE/EE (4)
AA/AA (4)
left: Axx (-3)
total: 2623

Po dodaniu heurystyki:

$ time perl ./scrab.pl <~/sowpods.txt 
OXYPHENBUTAZONE/OXYPHENBUTAZONE (615)
MICROEARTHQUAKE/MICROEARTHQUAKE (525)
NONOBJECTIVISMS/NONOBJECTIVISMS (465)
PREFIGURATIVELY/PREFIGURATIVELY (405)
DOWNREGULATIONS/DOWNREGULATIONS (300)
FORGEAxILITIES/FORGEABILITIES (238)
ADWAxDED/ADWARDED (104)
EA/EA (4)
left: L (-1)
total: 2655

real    3m58.517s
user    3m57.832s
sys 0m0.512s

1

Python 3, wynik 2735

(Optymalny wynik 2765, „6 słów po 15 liter i jedno 10-literowe słowo składające się z 8 liter o wartości 1 i dwóch spacji” zostało osiągnięte przez nutki .)

Użyłem chciwego podejścia podobnego do innych:

Zaczynam od list jednoelementowych zawierających słowa o najwyższym wyniku zawierające litery Q.

Na każdym kroku dla każdego elementu listy tworzę k = 800nowe listy z najlepszymi dozwolonymi słowami dla listy. Z zagregowanej listy list przechowuję listy knajlepszych wyników i powtarzam ten proces 10 razy.

Zauważ, że najlepsze kelementy ndługiej listy można uzyskać w O (n + k * log n), którym jest O (n), jeśli k<<ntak jak w naszym przypadku ( k = 800, n ~= 250000) z kolejką sterty. Myślę, że ta metoda nie jest używana w innych wnioskach, stąd mniejsze kwartości.

W razie potrzeby używam symboli wieloznacznych.

Czas działania wynosi kilka minut k = 800. Większe wartości i inne optymalizacje nie przyniosły jeszcze lepszych wyników.

Wynik:

DEMISEMIQUAVERS for 480
OXYPHENBUTAZONE for 615
ACKNOWLEDGEABLY for 465
FLASHFORWARDING for 435
INTERJACULATING for 375
COOPERATIVITIES for 330
METEOROID for 108
? is C for -45
? is M for -27
Left U for -1
Total score of 2735

Eksperymentowałem z produktem Descartesa najlepszych słów zawierających Q, J i X, ponieważ litery te ledwo dzielą słowa. Mój najlepszy wynik z tą strategią to 2723 ( DEMISEMIQUAVERS OXYPHENBUTAZONE INTERSUBJECTIVE FLASHFORWARDING KNOWLEDGABILITY RADIOPROTECTION ANALOGUE EA).

Niepotrzebny, skomplikowany kod spaghetti (ze śladami eksperymentów z innymi metodami):

import sys,heapq as hq

def score(s):
    r=0
    for c in s:
        r+=ord('1332142418513113:11114484:0'[ord(c)-65])-48
    return r*len(s)

def score_wl(rwl):
    ac=a[:] 
    ssd=0    
    for rwle in rwl:
        ac,sd=decr(ac,rwle)
        ssd+=sd
    return sum([score(rw) for rw in rwl])-ssd

def decr(av,nw):
    nav=av[:]
    scd=0
    for c in nw:
        if nav[ord(c)-65]>0:
            nav[ord(c)-65]-=1
        else:
            nav[ord('[')-65]-=1
            scd+=(ord('1332142418513113:11114484:'[ord(c)-65])-48)*len(nw)
    return (nav,scd)

def bestwordlist(w,ac,sw,count):
    stl=[swe[0] for swe in sw]
    sl=[]
    for we in w:
        if we[0] not in stl:
            acn,sd=decr(ac,we)
            if min(acn)>=0:
                sl+=[(we,score(we)-sd)]
    mw=hq.nlargest(count,sl,key=lambda p:p[1])
    res=[mwe[0] for mwe in mw]
    return res

def bestword(w,ac,sw):
    ms=0
    mw=''
    stl=[swe[0] for swe in sw]
    for we in w:
        if we[0] not in stl:
            acn,sd=decr(ac,we)
            if min(acn)>=0 and score(we)-sd>ms:
                ms=score(we)-sd
                mw=we
    return mw

def search(t,lev,av,sw):
    if lev>=len(t) and min(av)>=0:
        return [sw]
    if min(av)<0:
        return []
    r=[]
    stl=[swe[0] for swe in sw]
    if av[ord(tl[lev])-65]>0:
        for i in range(1,maxch):
            nw=t[lev][-i][0]
            if nw[0] not in stl:
                nav=decr(av,nw)[0]
                swn=sw[:]+[nw]       
                r+=search(t,lev+1,nav,swn)
    else:
        r+=[sw]
    if len(r)<10000:
        return r
    else:
        return hq.nlargest(10000,r,key=score_wl)

args=sys.argv
maxch=300#int(args[1])
maxch2=800#int(args[2])

w=[]
with open('scr_words.txt','r') as f:
    for l in f:
        w+=[l[:-1]]

a=[ord(c)-48  for c in '9224<2329114268216464221212']
                       #ABCDEFGHIJKLMNOPQRSTUVWXYZ?

t=[]
tl='Q'
for c in tl:
    tp=[]
    wl=[(x,score_wl([x])) for x in w if c in x]
    wl=sorted(wl,key=lambda p:p[1])
    t+=[wl]

r=search(t,0,a,[])

rt=sorted(r,key=score_wl)[-maxch2:]

ms=0
res='-'

for i in range(10-len(tl)):
    rtn=[]
    for sw in rt:

        ac=a[:] 
        for swe in sw:        
            ac,sd=decr(ac,swe)

        bwl=bestwordlist(w,ac,sw,maxch2)

        if not bwl:
            rtn+=[sw]
        for bwle in bwl:
            rtn+=[sw+[bwle]]

    rt=sorted(rtn,key=score_wl)[-maxch2:]
    print(rt[-1],score_wl(rt[-1]),'- left')
    sys.stdout.flush()

ms=-1000000
for sw in rt:    
    ssd=0
    ac=a[:]
    for swe in sw:
        ac,sd=decr(ac,swe)
        ssd+=sd
    sc=sum([score(swe) for swe in sw])-ssd
    left=''.join([chr(i+65)*v for i,v in enumerate(ac)])
    sc-=score(left)
    if sc>ms:
        ms=sc
        res=(sw,left)

fsw,left=res        
print('\n\nres =',ms,' '.join(fsw),'left',left)
    v
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.