Wyraź liczbę - nowoczesny „Des Chiffres et des Lettres”


16

Wyraź liczbę

W latach 60. Francuzi wymyślili program telewizyjny „Des Chiffres et des Lettres” (Cyfry i litery). Celem części programu „Cyfry” było zbliżenie się jak najbliżej określonej 3-cyfrowej liczby docelowej, przy użyciu częściowo losowo wybranych liczb. Zawodnicy mogli korzystać z następujących operatorów:

  • konkatenacja (1 i 2 to 12)
  • dodatek (1 + 2 to 3)
  • odejmowanie (5 - 3 = 2)
  • podział (8/2 = 4); dzielenie jest dozwolone tylko wtedy, gdy wynikiem jest liczba naturalna
  • mnożenie (2 * 3 = 6)
  • w nawiasach, aby zastąpić regularne pierwszeństwo operacji: 2 * (3 + 4) = 14

Każdej podanej liczby można użyć tylko raz lub wcale.

Na przykład liczbę docelową 728 można dokładnie dopasować do liczb: 6, 10, 25, 75, 5 i 50 za pomocą następującego wyrażenia:

75 * 10 - ( ( 6 + 5 ) * ( 50 / 25 ) ) = 750 - ( 11 * 2 ) = 750 - 22 = 728

Kadr z oryginalnego Frensha „Des Chiffres et des Lettres”

W tym wyzwaniu dla kodu masz za zadanie znaleźć wyrażenie jak najbliżej określonej liczby docelowej. Ponieważ żyjemy w XXI wieku, wprowadzimy większe liczby docelowe i więcej liczb do pracy niż w latach 60.

Zasady

  • Dozwolone operatory: konkatenacja, +, -, /, *, (i)
  • Operator konkatenacji nie ma symbolu. Po prostu połącz liczby.
  • Nie ma „odwrotnej konkatenacji”. 69 to 69 i nie można jej podzielić na 6 i 9.
  • Liczba docelowa jest dodatnią liczbą całkowitą i może zawierać maksymalnie 18 cyfr.
  • Istnieją co najmniej dwie liczby do pracy i maksymalnie 99 liczb. Liczby te są również dodatnimi liczbami całkowitymi z maksymalnie 18 cyframi.
  • Jest możliwe (a właściwie całkiem prawdopodobne), że liczby docelowej nie można wyrazić w kategoriach liczb i operatorów. Celem jest zbliżenie się jak najbliżej.
  • Program powinien zakończyć się w rozsądnym czasie (kilka minut na nowoczesnym komputerze stacjonarnym).
  • Obowiązują standardowe luki.
  • Twój program może nie zostać zoptymalizowany pod kątem zestawu testowego w sekcji „punktacja” tej układanki. Zastrzegam sobie prawo do zmiany zestawu testowego, jeśli podejrzewam, że ktoś naruszy tę zasadę.
  • To nie jest codegolf.

Wejście

Dane wejściowe składają się z tablicy liczb, które można sformatować w dowolny dogodny sposób. Pierwsza liczba to liczba docelowa. Reszta liczb to liczby, z którymi powinieneś pracować, aby utworzyć liczbę docelową.

Wynik

Wymagania dotyczące danych wyjściowych są następujące:

  • Powinien to być ciąg znaków, który składa się z:
    • dowolny podzbiór liczb wejściowych (oprócz numeru docelowego)
    • dowolna liczba operatorów
  • Wolę, aby wynik był pojedynczą linią bez spacji, ale jeśli musisz, możesz dodawać spacje i znaki nowej linii według własnego uznania. Zostaną one zignorowane w programie sterującym.
  • Wynik powinien być poprawnym wyrażeniem matematycznym.

Przykłady

Dla czytelności wszystkie te przykłady mają dokładne rozwiązanie, a każdy numer wejściowy jest używany dokładnie raz.

Wejście: 1515483, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Wyjście:111*111*(111+11+1)

Wejście: 153135, 1, 2, 3, 4, 5, 6, 7, 8, 9
Wyjście:123*(456+789)

Wejście: 8888888888, 9, 9, 9, 99, 99, 99, 999, 999, 999, 9999, 9999, 9999, 99999, 99999, 99999, 1
Wyjście:9*99*999*9999-9999999-999999-99999-99999-99999-9999-999-9-1

Wejście: 207901, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
Wyjście:1+2*(3+4)*(5+6)*(7+8)*90

Dane wejściowe: Dane 34943, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 wyjściowe: 1+2*(3+4*(5+6*(7+8*90))) Ale również poprawny wynik to:34957-6-8

Punktacja

Punktacja karna programu jest sumą błędów względnych wyrażeń dla poniższego zestawu testowego.

Równanie punktacji

Na przykład, jeśli wartość docelowa wynosi 125, a twoje wyrażenie daje 120, twój wynik karny to abs (1 - 120/125) = 0,04.

Program z najniższym wynikiem (najniższy całkowity błąd względny) wygrywa. Jeśli dwa programy zakończą się równo, wygrywa pierwsze zgłoszenie.

Wreszcie zestaw testowy (8 przypadków):

14142, 10, 11, 12, 13, 14, 15
48077691, 6, 9, 66, 69, 666, 669, 696, 699, 966, 969, 996, 999
333723173, 3, 3, 3, 33, 333, 3333, 33333, 333333, 3333333, 33333333, 333333333
589637567, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
8067171096, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
78649377055, 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992
792787123866, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169
2423473942768, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 2000000, 5000000, 10000000, 20000000, 50000000

Poprzednie podobne łamigłówki

Po utworzeniu tej układanki i umieszczeniu jej w piaskownicy zauważyłem coś podobnego (ale nie tego samego!) W dwóch poprzednich łamigłówkach: tutaj (brak rozwiązań) i tutaj . Ta łamigłówka jest nieco inna, ponieważ wprowadza operatora konkatenacji, nie szukam dokładnego dopasowania i lubię widzieć strategie zbliżania się do rozwiązania bez brutalnej siły. Myślę, że to trudne.


6
Czy potrafisz połączyć wyniki innych operatorów? Na przykład 21 = (1 + 1) 1.
Andrew

1
Łał. Dobre pytanie. Nie myślałem o tym. Moja pierwsza odpowiedź brzmiała: „nie ma mowy; nie tak zamierzałem”. Ale to takie rozsądne. A konkatenacja nie byłaby dużym operatorem, gdyby nie było to możliwe. Więc tak! To jest możliwe. Umieść nawiasy wokół wyrażenia, umieść obok niego inne wyrażenie lub liczbę i nastąpi konkatenacja. Więc (1 + 1) (1 + 1) to 22. Dostosuję odpowiednio pytanie.
agtoever

1
Kiedy byłem dzieckiem, patrzyłem na ten program i jestem całkiem pewien, że nie było operatora konkatenacji . Cóż, może zasady się zmieniły od czasu lat 90.
Michael M.

Prawdopodobnie masz rację. Nie byłem tego pewien. Ale sprawia, że ​​układanka jest bardziej interesująca ...
jeszcze

1
Potwierdzam, że konkatenacja nie istnieje lub jest nowym dodatkiem, ale uwielbiam to - sprawia, że ​​wyzwanie jest o wiele bardziej interesujące!
Docteur

Odpowiedzi:


5

C ++ 17, wynik 0,0086

Ten program ma niedeterministyczny wynik karny ze względu na wyścigi w wątkach, więc deklaruję na podstawie średnio trzech przebiegów, z których każdy obsłużył zestaw testów w niecałą minutę:

score 0.000071 for 14(11*13) = 14143
score 0.000019 for (696699+66)*69 = 48076785
score 0.000069 for 333333+333333333+33333 = 333699999
score 0.000975 for 5(1((((555555255-1-1-4-5-5-5-5-4-4-4-4-4-4-4-4-4-4-4-4-4-5-3-3-3-3-3-3-3-3-3-3-3-3-3-5)/2*3/2-2)/2*3+2+1+1+1+1-1-1)/2*2/2/2/2)/2) = 589062470
score 0.000462 for (((199181197*41-193-191-179-173-167-163-157-151-149-139-137-131-127-113-109-107-103-101-97-89-83-79-73-71-67-61-59-53-47-43-17-3)/5*7+23)/2/11*13+19)/31*37 = 8063447296
score 0.000118 for (992930870*72+812+756+702+650+600+552+506+462+420+380+342-42-56-182-12-210-156-90-20-272-30-6-306)/240*132*2 = 78640130184
score 0.000512 for (((317811*832040*3-39088169-24157817-14930352-9227465-5702887-2178309-1346269-3524578-514229-196418-121393-17711-233-75025-46368-89-28657-4181-10946-6765-34-987-2584-13-610-8-1)/2-377-144)/5-1597)1 = 793193194211
score 0.005725 for 2(20((120000000*20000+50000000+10000000+5000000+2000000+100000+50000+10000+5000+2000-500-1000)/50)/5)+200+100+10 = 2409600268972
total score = .007951

real    0m57.876s
user    4m24.396s
sys     0m0.684s

score 0.000071 for 14(11*13) = 14143
score 0.000019 for (696699+66)*69 = 48076785
score 0.000069 for 333333+333333333+33333 = 333699999
score 0.001675 for (3((((((((555555455+5+5+5+5-1-1-4-4-4-4-4-4-4-4-4-1-4-4-4-4-5-3-3-3-3-3-4)/2*3/2-1)*2+5)/3*3+3)/2-3-3)/2*3/2*2+2)/2*2/2*3+2+1)/5/2)-1-1-1-1-1-1-1-1-1-2)/2*3 = 590624943
score 0.000973 for ((199181197*41-193-191-179-173-167-163-157-151-149-139-137-131-127-113-107-101-59-97-79-3-71-67-83-2-47-37-73-89-103-19-11-29)/5*7+109-23)/61*43 = 8059325224
score 0.000118 for ((992930870*72+812+756+702+650+600+552+506+462+420+380+342+306+272+240+210+182-0-56-110-20-90)/2-42-156)/30*132/12*6 = 78640132296
score 0.000512 for (((317811*832040*3-39088169-24157817-14930352-9227465-5702887-3524578-514229-196418-2178309-1346269-121393-75025-28657-10946-233-46368-89-17711-2584-6765-610-4181-34-987-55-1)/2-8-144-377)/5-1597)1 = 793193194161
score 0.004734 for 2(20((120000000*20000+50000000+10000000+5000000+2000000+100000+50000+10000+5000+2000-100-1000-500)/200*50/10)/5) = 2412000335827
total score = .008171

real    0m45.636s
user    3m30.272s
sys     0m0.720s

score 0.000071 for 14(11*13) = 14143
score 0.000019 for (696699+66)*69 = 48076785
score 0.000069 for 333333+333333333+33333 = 333699999
score 0.002963 for 1(((((((555555555+5+5+5+5+5+5+4+4+4+4-1-2-4-4-4-4-4-4-4-4-4-4-4-3-3-3-3)/2*3+3+2)/2*2+3+3)/2*2/2/2*3+3)/2-3-3)*3/2-1-3)/2*3/2/2)/2 = 587890622
score 0.000069 for ((((199181197*41-193-191-179-173-167-163-157-151-149-139-137-131-127-113-109-107-103-101-97-89-83-79-73-71-67-61-59-53-47-43-37-11)/7)2+3)/23*17-13-5)/31*29 = 8066615553
score 0.000118 for ((992930870*72+812+756+702+650+600+552+506+462+420+380-0-6-90-56-42-272-182-110-210-342-30-306)*2+12)/240*132 = 78640129524
score 0.000512 for (((317811*832040*3-39088169-24157817-14930352-9227465-5702887-2178309-1346269-3524578-514229-196418-121393-75025-46368-28657-144-55-17711-2584-10946-4181-6765-21-610-987-377-8-1)/2-89-13)/5-233-1597)1 = 793193192491
score 0.005725 for 2(20((120000000*20000+50000000+10000000+5000000+2000000+100000+50000+10000+5000+2000-500-1000)/50)/5)+200+100+10 = 2409600268972
total score = .009546

real    0m57.289s
user    4m19.488s
sys     0m0.708s

Oto program; wyjaśnienie znajduje się w komentarzach. Można zdefiniować CONCAT_NONEdla tradycyjnych reguł odliczania, które nie zezwalają na konkatenację lub CONCAT_DIGITSna konkatenację wartości wejściowych, ale nie wyników pośrednich. Domyślnie, bez żadnej z tych definicji, stosowane są najbardziej liberalne reguły.

#include <omp.h>

#include <algorithm>
#include <cmath>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>

// We apply some principles to help us arrive at a good enough solution
// in a reasonable time:

// 1. Ruthlessly prune duplicate expressions from the candidate
//    list.  If we've seen a+b, then there's no need to consider
//    b+a.  Similarly, having seen (a+b)+c, then (a+c)+b can be
//    discounted.
// 2. Detect duplicates by storing batches of part-processed results
//    in sets before sending to the next pass.
// 3. Sort our candidates so that those containing a term near to the
//    target are first in line for further processing.
// 4. Gradually widen our acceptance margin as we proceed.  This
//    allows us to terminate quickly without exhaustively searching
//    the full problem space.
// 5. Parallelize the generation of candidate solutions using OpenMP.

// Define precedence values for our operators, so that we can print
// with the minimum sufficient parentheses.  The values are grouped
// into tens so that add/10 == subtract/10 and mult/10 == divide/10 -
// the operators use that for avoiding duplicate expressions.
static const int PREC_ADD = 26;
static const int PREC_SUBTRACT = 24;
static const int PREC_MULT = 16;
static const int PREC_DIVIDE = 14;
static const int PREC_CONCAT = 2;
static const int PREC_LITERAL = 0;

static const int PREC_MAX = 1000;

class LiteralTerm;

struct Term
{
    long value;
    int precedence;

    Term(long value, int precedence)
        : value(value), precedence(precedence)
    {}
    Term(const Term&) = default;
    virtual ~Term() = default;

    virtual std::string to_string(int p = PREC_MAX) const = 0;
    virtual LiteralTerm as_literal() const = 0;

    long distance(long target) const { return std::abs(value - target); }

    // We sort large values first, in the hope that this will approach
    // the target faster.
    bool operator<(const Term& o) const { return value > o.value; }
};


// We have two kinds of Term: a LiteralTerm is a leaf node of the
// expression tree, and a BinaryTerm is an internal node.
struct Operator;

class LiteralTerm : public Term
{
    std::string s;
public:
    LiteralTerm(std::string s) : Term(std::stol(s), 0), s(s) {}
    LiteralTerm(std::string s, long value) : Term(value, 0), s(s) {}
    std::string to_string(int = PREC_MAX) const override { return s; }
    LiteralTerm as_literal() const override { return *this; }
};

struct BinaryTerm : public Term
{
    Operator const *op;

    std::shared_ptr<const Term> a;
    std::shared_ptr<const Term> b;

    BinaryTerm(long value, const Operator* op, std::shared_ptr<const Term> a, std::shared_ptr<const Term> b);
    BinaryTerm(const BinaryTerm&) = default;
    BinaryTerm& operator=(const BinaryTerm&) = default;

    std::string to_string(int p = PREC_MAX) const;

    LiteralTerm as_literal() const override { return { to_string(), value }; }
};

struct TermList {
    std::vector<std::shared_ptr<const Term>> terms;
    std::vector<long> values;
    long target_value;
    long badness;

    TermList(std::vector<std::shared_ptr<const Term>> terms, long target_value)
        : terms(std::move(terms)),
          values(),
          target_value(target_value),
          badness(min_badness(this->terms, target_value))
    {
        values.reserve(terms.size());
        std::transform(terms.begin(), terms.end(),
                       std::back_inserter(values), [](auto t) { return t->value; });
        // Literals that begin with "0" need to be distinct from (but
        // adjacent to) equivalent non-literals.  Append a negative
        // value for each term with leading zeros.  There's an edge
        // case involving multiple leading zeros, but we'll ignore
        // that.
        for (const auto& v: terms)
            if (v->precedence <= PREC_CONCAT && v->value > 0 && v->to_string()[0] == '0')
                values.push_back(-v->value);
    }

    // Sort according to the term that's nearest to the target.
    bool operator<(const TermList& o) const
    {
        return std::make_tuple(std::cref(badness),   std::cref(values))
            <  std::make_tuple(std::cref(o.badness), std::cref(o.values));
    }

private:
    static long min_badness(const std::vector<std::shared_ptr<const Term>>& t, long target_value)
    {
        auto less_bad = [target_value](const auto& a, const auto&b)
            { return a->distance(target_value) < b->distance(target_value); };
        auto const& e = *std::min_element(t.begin(), t.end(), less_bad);
        return std::abs(e->value - target_value);
    }
};

using Set = std::set<TermList>;

// Detect duplicate expressions.  This will discount "3+2-3", "8*5*2/3/5"
// and similar expressions that contain simple pairs of inverse operands.
static bool contains_value(const Term& t, int precedence, long value)
{
    auto *const b = dynamic_cast<const BinaryTerm*>(&t);
    if (t.precedence == precedence)
        return t.value == value
            || b && b->b->value < value
            || b && contains_value(*b->a, precedence, value)
            || b && contains_value(*b->b, precedence, value);
    if (t.precedence/10 == precedence/10)
        // Advance through the subtractions to inspect the additions
        // (or through the divides to inspect the multiplications).
        return b && contains_value(*b->a, precedence, value);
    return false;
}

// An Operator is a factory producing binary terms of a given type,
// and for printing those terms.  Here's the abstract base class.
struct Operator
{
    using TermPointer = std::shared_ptr<const Term>;
    using BinaryTermPointer = std::shared_ptr<const BinaryTerm>;

    int const precedence;
    std::string const joiner;

    virtual std::string to_string(const Term &a, const Term &b) const {
        return a.to_string(precedence) + joiner + b.to_string(precedence);
    }

    virtual BinaryTermPointer make_term(TermPointer a, TermPointer b) const {
        long r = evaluate(*a, *b);
        return r ? std::make_shared<BinaryTerm>(r, this, a, b) : BinaryTermPointer();
    }

    virtual ~Operator() = default;

protected:
    Operator(int precedence, std::string joiner) : precedence(precedence), joiner(joiner) {}

    virtual long evaluate(const Term& a, const Term& b) const = 0;
};

// Now we define a subclass for each permitted operator
struct AddOperator : Operator
{
    AddOperator() : Operator(PREC_ADD, "+") {}

    long evaluate(const Term& a, const Term& b) const override
    {
        const auto *d = dynamic_cast<const BinaryTerm*>(&a);
        long r;
        return b.precedence/10 != PREC_ADD/10
            && a.precedence != PREC_SUBTRACT
            && b.value > 0
            && ! (d && d->precedence == this->precedence && d->b->value < b.value)
            && !__builtin_add_overflow(a.value, b.value, &r)
            ? r : 0;
    }
};
struct SubtractOperator : Operator
{
    SubtractOperator() : Operator(PREC_SUBTRACT, "-") {}

    long evaluate(const Term& a, const Term& b) const override
    {
        return b.precedence < PREC_SUBTRACT
            && a.value > b.value
            && !contains_value(a, PREC_ADD, b.value)
            ? a.value - b.value : 0;
    }
};
struct MultiplyOperator : Operator
{
    MultiplyOperator() : Operator(PREC_MULT, "*") {}

    long evaluate(const Term& a, const Term& b) const override
    {
        const auto *d = dynamic_cast<const BinaryTerm*>(&a);
        long r;
        return b.precedence/10 != PREC_MULT/10
            && b.value > 1
            && (b.value > 2 || a.value > 2)
            && ! (d && d->precedence == this->precedence && d->b->value < b.value)
            && !__builtin_mul_overflow(a.value, b.value, &r)
            ? r : 0;
    }
};
struct DivideOperator : Operator
{
    DivideOperator() : Operator(PREC_DIVIDE, "/") {}

    long evaluate(const Term& a, const Term& b) const override
    {
        return b.precedence/10 != PREC_DIVIDE/10 && b.value > 1
            && a.value % b.value == 0
            && !contains_value(a, PREC_MULT, b.value)
            ? a.value / b.value : 0;
    }
};

struct ConcatOperator : Operator
{
    ConcatOperator() : Operator(PREC_CONCAT, "") {}

    long evaluate(const Term& a, const Term& b) const override
    {
#ifdef CONCAT_DIGITS
        if (a.precedence > PREC_CONCAT || a.value == 0 || b.precedence >= PREC_CONCAT)
            return 0;
#else  // CONCAT_FULL
        if (b.precedence == PREC_CONCAT || a.value == 0)
            return 0;
#endif
        long bv = b.value, av = a.value, x = 1, r;
        if (b.precedence > PREC_CONCAT) while (x <= bv) x*= 10;
        else { int d = b.to_string().length(); while (d--) x*= 10; }
        return __builtin_mul_overflow(av, x, &r) || __builtin_add_overflow(r, bv, &r) ? 0 : r;
    }
};
struct ReverseConcatOperator : ConcatOperator
{
    BinaryTermPointer make_term(TermPointer a, TermPointer b) const override
    {
        return ConcatOperator::make_term(b, a);
    }
};

static const std::vector<std::shared_ptr<const Operator>> ops{
#ifndef CONCAT_NONE
        std::make_shared<ConcatOperator>(),
        std::make_shared<ReverseConcatOperator>(),
#endif
        std::make_shared<MultiplyOperator>(),
        std::make_shared<AddOperator>(),
        std::make_shared<SubtractOperator>(),
        std::make_shared<DivideOperator>(),
};


// Implement the BinaryTerm members that use Operator
BinaryTerm::BinaryTerm(long value, const Operator* op, std::shared_ptr<const Term> a, std::shared_ptr<const Term> b)
    : Term(value, op->precedence), op(op), a(std::move(a)), b(std::move(b))
{}

std::string BinaryTerm::to_string(int p) const
{
    auto const s = op->to_string(*a, *b);
    return (p/10) < (precedence/10) ? "("+s+")" : s;
}


// An object to represent our target value, and how close we have
// reached so far.
struct Target
{
    const long value;
    double max_badness = 0;

    LiteralTerm best = {"0"};
    long best_badness = value;

    bool done() const { return best_badness < max_badness; }
    double score() const { return 1.*best_badness/value; }

    void update(const Term& t)
    {
        auto badness = std::abs(t.value - value);
        if (badness < best_badness) {
            best = t.as_literal();
            best_badness = badness;
        }
    }

    void update(const TermList& terms)
    {
        for (auto t: terms.terms)
            update(*t);
    }

    void increase_threshold(size_t items_seen)
    {
        // Adjust our acceptance threshold nearer to accepting 0 by
        // 0.01% for every million values seen.
        max_badness += (value - max_badness) * .0001 * std::exp(items_seen / 1000000);
    }
};

// OpenMP reduction for sets
auto merge(auto& a, auto& b)
{
    auto it = a.begin();
    for (auto&& e: b)
        it = a.insert(std::move(e)).first;
    return a;
}
#pragma omp declare reduction(merge: Set: merge<Set>(omp_out, omp_in) ) \
    initializer(omp_priv = Set())


// We run a cascade of pair-wise combination steps, where for each
// input TermList, we generate every possible allowed pairing of its
// terms, and pass that through (in batches) to the next stage.
struct Combiner
{
    std::unique_ptr<Combiner> const next;
    Target& target;
    size_t const max_output_size;
    size_t const nterms;

    Set input = {};
    size_t output_size = 0;

    Combiner(Target& target, size_t nterms, size_t max_output_size)
        : next(nterms > 0 ? std::make_unique<Combiner>(target, nterms-1, max_output_size) : nullptr),
          target(target),
          max_output_size(max_output_size),
          nterms(nterms)
    {}

    inline void insert(const TermList&& t)
    {
        target.update(t);
        if (target.done()) return;
        if (next) {
            if (input.insert(t).second)
                output_size += count_distinct_pairs(t);
            if (output_size >= max_output_size)
                process_input();
        }
    }

    void finish()
    {
        process_input();
        if (next)
            next->finish();
    }

private:
    // Here's where we do the real work - generating and sifting the
    // combined terms for the next pass.
    void process_input()
    {
        if (target.done()) {
            return;
        }

        if (!next)
            return;

        // Move the elements into a vector, so we can parallelize the
        // for-loop.
        auto in = std::vector<Set::value_type>();
        in.reserve(input.size());
        std::move(input.begin(), input.end(), std::back_inserter(in));
        input.clear();
        output_size = 0;

        auto out = Set();

#pragma omp parallel reduction(merge:out)
        {
#pragma omp for
            for (auto it = in.begin();  it < in.end();  ++it)
            {
                try {
                    const auto end = it->terms.cend();
                    for (auto i = it->terms.cbegin();  i != end;  i = std::upper_bound(i, end, *i))
                        for (auto j = i+1;  j != end;  j = std::upper_bound(j, end, *j)) {
                            for (const auto& op: ops) {
                                auto x = op->make_term(*i, *j);
                                if (x) out.insert(replace(*it, i, j, x));
                            }
                        }
                } catch (const std::bad_alloc&) {
                    // Ignore it; process what we've generated so far.
                }
            }
        }

        // Now we're in single-threaded code, we can pass the combined
        // results to the next combiner.
        for (auto& o: out)
            next->insert(std::move(o));

        target.increase_threshold(out.size());
    }


    // Helper methods used by the above

    // An upper bound on the possible number of output TermLists,
    // assuming every combination is valid.  If all n terms in the
    // input list are distinct, that's just ½n(n-1), but if values
    // are duplicated, we need to reduce n to the number of distinct
    // values, and then add in the cases where we pick two of the
    // same value.
    static int count_distinct_pairs(const TermList& terms)
    {
        int distinct = 0, duplicated = 0;
        auto it = terms.terms.begin(),
            end = terms.terms.end();
        while (it != end) {
            ++distinct;
            auto const& v = (*it)->value;
            if (++it == end || (*it)->value != v) continue;
            ++duplicated;
            while (++it != end && (*it)->value == v)
                ;
        }
        return distinct * (distinct - 1) / 2 + duplicated;
    }

    // Create a new TermList from o by replacing elements i and j with
    // newly-created term n.
    static TermList replace(const TermList& o, auto i, auto j, std::shared_ptr<const Term> n)
    {
        std::vector<std::shared_ptr<const Term>> r;
        r.reserve(o.terms.size() - 1);
        auto added = false;
        for (auto k = o.terms.begin();  k != o.terms.end();  ++k) {
            if (!added && (*k)->value < n->value) { r.push_back(n); added = true; }
            if (k != i && k != j) r.push_back(*k);
        }
        if (!added) r.push_back(n);
        return { r, o.target_value };
    }
};


#include <iostream>
std::ostream& operator<<(std::ostream& o, const Term& t)
{
    return o << t.to_string()<< " = " << t.value;
}
std::ostream& operator<<(std::ostream& o, const TermList& t)
{
    auto *sep = "";
    o << "[" << t.badness << "] ";
    for (auto const& x: t.terms)
        o << sep << *x, sep = ", ";
    return o;
}

int main(int argc, char **argv)
{
    if (argc < 3) {
        std::cerr << "Usage: " << argv[0] << " target term ...";
        return EXIT_FAILURE;
    }
    auto target = Target{std::stol(*++argv)};

    std::vector<std::shared_ptr<const Term>> terms;
    while (*++argv) {
        auto t = std::make_shared<LiteralTerm>(*argv);
        target.update(*t);
        terms.push_back(t);
    }
    std::sort(terms.begin(), terms.end());

    // Construct the sieve
    Combiner search{target, terms.size(), 2500000/terms.size() + 1}; // tunable - max set size
    search.insert({terms, target.value});
    search.finish();

    std::cout << "score " << std::fixed << target.score() << " for " << target.best << std::endl;
}

Skompilowałem to za pomocą GCC 6.2, używając g++ -std=c++17 -fopenmp -march=native -O3 (wraz z kilkoma opcjami debugowania i ostrzeżeń).


3

Python 2.7. Wynik: 167039106

Postanowiłem więc rzucić na to okiem. Nic nadzwyczajnego. Ten program sortuje liczby w odwrotnej kolejności (od dużej do małej) i wypróbowuje kolejno wszystkich operatorów. Płonący szybko, ale wydajność, która zasługuje na zastąpienie.

Oto program:

import sys

def score(current,target):
    return abs(1.0-current/float(target))

# Process input and init variables
targetvalue=int(sys.argv[1].strip(','))
numbers=[int(a.strip(',')) for a in sys.argv[2:]]
numbers.sort(reverse=True)
expression='('+str(numbers[0])+')'
currentvalue=nextvalue=testvalue=numbers[0]

# Loop over all values (except the first one)
for value in numbers[1:]:
    # Set multiplication as the reference operator...
    testvalue=currentvalue*value
    minscore=score(testvalue,targetvalue)
    operator="*"
    nextvalue=testvalue

    # then try division (only if result is integer and not divided by zero)...
    if value!=0 and currentvalue%value==0:
        testvalue=currentvalue/value
        if score(testvalue,targetvalue)<minscore:
            operator="/"
            minscore=score(testvalue,targetvalue)
            nextvalue=testvalue

    # and addition...
    testvalue=currentvalue+value
    if score(testvalue,targetvalue)<minscore:
        operator="+"
        minscore=score(testvalue,targetvalue)
        nextvalue=testvalue

    # and subtraction...
    testvalue=currentvalue-value
    if score(testvalue,targetvalue)<minscore:
        operator="-"
        minscore=score(testvalue,targetvalue)
        nextvalue=testvalue

    # and concatenation
    testvalue=int(str(currentvalue)+str(value))
    if score(testvalue,targetvalue)<minscore:
        operator=""
        minscore=score(testvalue,targetvalue)
        nextvalue=testvalue

    # finally check if any operator improces the score. If so, append to the expression
    if score(nextvalue,targetvalue)<score(currentvalue,targetvalue):
        expression='('+expression+operator+str(value)+')'
        currentvalue=nextvalue

print(expression)

Dane wyjściowe dla wszystkich przypadków testowych to:

((((((15)14)*13)-12)-11)-10)
((((((((((((999)996)+969)+966)+699)+696)+669)+666)*69)-66)-9)-6)
(((((((((333333333)+333333)+33333)+3333)+333)+33)+3)+3)+3)
(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((5)5)5)5)5)5)5)5)5)+5)+5)+5)+5)+5)+5)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)
((((((((((((((((((((((((((((((((((((((((((((((199)197)193)+191)+181)+179)+173)+167)+163)+157)+151)+149)+139)+137)+131)+127)+113)+109)+107)+103)+101)+97)+89)+83)*79)-73)-71)-67)-61)-59)-53)-47)-43)-41)-37)-31)-29)-23)-19)-17)-13)-11)-7)-5)-3)/2)
(((((((((((((((((((((((((((((((992)930)870)+812)+756)+702)+650)+600)+552)+506)+462)+420)+380)+342)+306)+272)+240)+210)+182)*156)-132)-110)-90)-72)-56)-42)-30)/20)*12)-6)-2)
((((((((((((((((((((((((((((((((((((((39088169)+24157817)+14930352)+9227465)+5702887)+3524578)+2178309)+1346269)+832040)+514229)+317811)+196418)+121393)+75025)+46368)+28657)+17711)*10946)-6765)-4181)-2584)-1597)-987)-610)-377)-233)-144)-89)-55)-34)-21)-13)-8)-5)-3)/2)+1)+1)
(((((((((((((((((((((50000000)+20000000)+10000000)+5000000)+2000000)+100000)*50000)-20000)-10000)-5000)-2000)-1000)-500)-200)-100)-50)-20)-10)/5)*2)+1)
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.