Przerysuj obraz za pomocą tylko jednej zamkniętej krzywej


74

Zainspirowany przez vi.sualize.us

Cel

Dane wejściowe to obraz w skali szarości, a dane wyjściowe to obraz czarno-biały. Obraz wyjściowy składa się tylko z jednej zamkniętej krzywej (pętli), która nie może się przecinać ani dotykać. Szerokość linii powinna być stała na całym obrazie. Wyzwanie polega na znalezieniu odpowiedniego algorytmu. Wyjście musi po prostu reprezentować obraz wejściowy, ale z dowolną swobodą artystyczną. Rozdzielczość nie jest tak ważna, ale proporcje powinny pozostać mniej więcej takie same.

Przykład

wprowadź opis zdjęcia tutaj wprowadź opis zdjęcia tutaj

Więcej zdjęć testowych

loch ness drapacz chmur Einstein szachownica


2
Możesz nałożyć pewne ograniczenia na względne rozdzielczości. W przeciwnym razie można po prostu znacznie zwiększyć rozdzielczość (powiedzmy współczynnik 32 lub coś takiego), a następnie zastąpić każdy piksel blokiem 32x32 o odpowiedniej średniej intensywności. Powinno być wystarczająco łatwe, aby wszystkie bloki się połączyły i ułożyły je w taki sposób, że wszystko łączy się w jedną pętlę.
Martin Ender

1
Jeśli linia nie może się dotykać, brak ciemnych obszarów, ciemniejszy odcień będzie 50% szary
edc65

1
@Martin The width of the line shall be constant throughout the whole image.Ale wciąż przydatna wskazówka
edc65

2
@ edc65 Tak stała, ale nadal możesz ustawić ją szerszą niż piksel (stale), w którym to przypadku możesz mieć dwie części linii oddzielone jednym pikselem, a wtedy obszar będzie ciemniejszy niż 50% średniej intensywności.
Martin Ender,

2
@Gitubphagocyte Przede wszystkim obraz powinien być czarno-biały, ale nie ma znaczenia, czy zawiera efekt antyaliasingu. I powinieneś starać się unikać tej sytuacji dotykania pikseli po przekątnej, ale znowu, jeśli zdarzy się to tylko kilka razy na obrazie, będzie w porządku, o ile nie będziesz go używać systematycznie. Dziękuję za wkład. @ edc65: Tak, zdaję sobie z tego sprawę, celem jest to, aby widz nadal mógł rozpoznać jedną wyraźną linię na obrazie (podczas powiększania).
flawr

Odpowiedzi:


34

Java: styl matrycowy

Ponieważ nikt jeszcze nie odpowiedział na to pytanie, dam mu szansę. Najpierw chciałem wypełnić płótno krzywymi Hilberta, ale ostatecznie zdecydowałem się na prostsze podejście:

kropka styl Mona Lisa

Oto kod:

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.io.File;

import javax.imageio.ImageIO;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;

public class LineArt extends JPanel {
    private BufferedImage ref;
    //Images are stored in integers:
    int[] images = new int[] {31, 475, 14683, 469339};
    int[] brightness = new int[] {200,170,120,0};

    public static void main(String[] args) throws Exception {
        new LineArt(args[0]);
    }

    public LineArt(String filename) throws Exception {
        ref = ImageIO.read(new File(filename));
        JFrame frame = new JFrame();
        frame.setVisible(true);
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        frame.setSize(ref.getWidth()*5, ref.getHeight()*5);
        this.setPreferredSize(new Dimension((ref.getWidth()*5)+20, (ref.getHeight()*5)+20));
        frame.add(new JScrollPane(this));
    }

    @Override
    public void paint(Graphics g) {
        Graphics2D g2d = (Graphics2D) g;
        g2d.setColor(Color.WHITE);
        g2d.fillRect(0, 0, getWidth(), getHeight());
        g2d.translate(10, 10);
        g2d.setColor(Color.BLACK);
        g2d.drawLine(0, 0, 4, 0);
        g2d.drawLine(0, 0, 0, ref.getHeight()*5);

        for(int y = 0; y<ref.getHeight();y++) {
            for(int x = 1; x<ref.getWidth()-1;x++) {
                int light = new Color(ref.getRGB(x, y)).getRed();
                int offset = 0;
                while(brightness[offset]>light) offset++;
                for(int i = 0; i<25;i++) {
                    if((images[offset]&1<<i)>0) {
                        g2d.drawRect((x*5)+i%5, (y*5)+(i/5), 0,0);
                    }
                }
            }
            g2d.drawLine(2, (y*5), 4, (y*5));
            g2d.drawLine((ref.getWidth()*5)-5, (y*5), (ref.getWidth()*5)-1, (y*5));
            if(y%2==0) {
                g2d.drawLine((ref.getWidth()*5)-1, (y*5), (ref.getWidth()*5)-1, (y*5)+4);
            } else {
                g2d.drawLine(2, (y*5), 2, (y*5)+4);
            }
        }
        if(ref.getHeight()%2==0) {
            g2d.drawLine(0, ref.getHeight()*5, 2, ref.getHeight()*5);
        } else {
            g2d.drawLine(0, ref.getHeight()*5, (ref.getWidth()*5)-1, ref.getHeight()*5);
        }
    }
}

Aktualizacja : teraz tworzy cykl, a nie tylko jedną linię


2
Bardzo ładne i proste rozwiązanie, nie wyobrażałem sobie takiego rozwiązania, ale wygląda świetnie!
flawr

@DenDenDo zasugerował wykreślenie animacji przepływu skracania krzywej. Byłoby wspaniale, gdybyś mógł podać plik tekstowy (csv lub cokolwiek chcesz) ze współrzędnymi wszystkich punktów kontrolnych, których użyłeś we właściwej kolejności. Zrobiłem skrypt Matlaba do obliczania animacji - ale oczywiście możesz to zrobić samodzielnie =)
flawr

35

Python: Krzywa Hilberta ( 373 361)

Zdecydowałem się narysować krzywą Hilberta o zmiennej ziarnistości w zależności od intensywności obrazu:

import pylab as pl
from scipy.misc import imresize, imfilter
import turtle

# load image
img = pl.flipud(pl.imread("face.png"))

# setup turtle
levels = 8
size = 2**levels
turtle.setup(img.shape[1] * 4.2, img.shape[0] * 4.2)
turtle.setworldcoordinates(0, 0, size, -size)
turtle.tracer(1000, 0)

# resize and blur image
img = imfilter(imresize(img, (size, size)), 'blur')

# define recursive hilbert curve
def hilbert(level, angle = 90):
    if level == 0:
        return
    if level == 1 and img[-turtle.pos()[1], turtle.pos()[0]] > 128:
        turtle.forward(2**level - 1)
    else:
        turtle.right(angle)
        hilbert(level - 1, -angle)
        turtle.forward(1)
        turtle.left(angle)
        hilbert(level - 1, angle)
        turtle.forward(1)
        hilbert(level - 1, angle)
        turtle.left(angle)
        turtle.forward(1)
        hilbert(level - 1, -angle)
        turtle.right(angle)

# draw hilbert curve
hilbert(levels)
turtle.update()

Właściwie planowałem podejmować decyzje na różnych poziomach szczegółowości, np. „To miejsce jest tak jasne, że zatrzymam rekurencję i przejdę do następnego bloku!”. Ale lokalna ocena intensywności obrazu prowadząca do dużych ruchów jest bardzo niedokładna i wygląda brzydko. Więc ostatecznie zdecydowałem, czy pominąć poziom 1, czy narysować kolejną pętlę Hilberta.

Oto wynik pierwszego obrazu testowego:

wynik

Dzięki @githubphagocyte renderowanie jest dość szybkie (przy użyciu turtle.tracer). Dlatego nie muszę czekać całą noc na wynik i mogę iść do mojego zasłużonego łóżka. :)


Trochę golfa

@flawr: „krótki program”? Nie widziałeś wersji w golfa! ;)

Tak dla zabawy:

from pylab import*;from scipy.misc import*;from turtle import*
i=imread("f.p")[::-1];s=256;h=i.shape;i=imfilter(imresize(i,(s,s)),'blur')
setup(h[1]*4.2,h[0]*4.2);setworldcoordinates(0,0,s,-s);f=forward;r=right
def h(l,a=90):
 x,y=pos()
 if l==1and i[-y,x]>128:f(2**l-1)
 else:
  if l:l-=1;r(a);h(l,-a);f(1);r(-a);h(l,a);f(1);h(l,a);r(-a);f(1);h(l,-a);r(a)
h(8)

( 373 361 znaków. Ale to potrwa wieczność, odkąd usunęłem turte.tracer(...)polecenie!)


Animacja autorstwa flawr

flawr: Mój algorytm jest nieco zmodyfikowany do tego, co powiedział mi @DenDenDo: Musiałem usunąć niektóre punkty w każdej iteracji, ponieważ konwergencja drastycznie spowolniłaby. Dlatego krzywa się przecina.

wprowadź opis zdjęcia tutaj


1
Ładnie wykonane! Jeśli chcesz szybciej działać, spróbuj screen.tracer(0)zamiast turtle.speed(0). Może być konieczne utworzenie instancji ekranu na początku, ale jeśli jest to jedyna instancja ekranu, wszystkie żółwie zostaną automatycznie do niego przypisane. Następnie screen.update()na samym końcu, aby wyświetlić wyniki. Byłem zaskoczony różnicą prędkości, kiedy po raz pierwszy to odkryłem ...
trichoplax

Byłem naprawdę zaskoczony, że udało ci się to zrobić w tak krótkim programie! Ale w każdym razie gratulacje! fraktale ftw =)
flawr

@DenDenDo zasugerował wykreślenie animacji przepływu skracania krzywej. Byłoby wspaniale, gdybyś mógł podać plik tekstowy (csv lub cokolwiek chcesz) ze współrzędnymi wszystkich punktów kontrolnych, których użyłeś we właściwej kolejności. Zrobiłem skrypt Matlaba do obliczania animacji - ale oczywiście możesz to zrobić samodzielnie =)
flawr

@flawr: Proszę bardzo.
Falko,


32

Python 3.4 - Problem podróżującego sprzedawcy

Program tworzy przerywany obraz z oryginału:

wprowadź opis zdjęcia tutaj wprowadź opis zdjęcia tutaj

Dla każdego czarnego piksela losowo generowany jest punkt w pobliżu środka piksela i punkty te są traktowane jako problem podróżnego sprzedawcy . Program zapisuje plik HTML zawierający obraz SVG w regularnych odstępach czasu, gdy próbuje zmniejszyć długość ścieżki. Ścieżka zaczyna się przecinać i stopniowo maleje z upływem godzin. W końcu ścieżka przestaje się przecinać:

wprowadź opis zdjęcia tutaj

wprowadź opis zdjęcia tutaj

'''
Traveling Salesman image approximation.
'''

import os.path

from PIL import Image   # This uses Pillow, the PIL fork for Python 3.4
                        # https://pypi.python.org/pypi/Pillow

from random import random, sample, randrange, shuffle
from time import perf_counter


def make_line_picture(image_filename):
    '''Save SVG image of closed curve approximating input image.'''
    input_image_path = os.path.abspath(image_filename)
    image = Image.open(input_image_path)
    width, height = image.size
    scale = 1024 / width
    head, tail = os.path.split(input_image_path)
    output_tail = 'TSP_' + os.path.splitext(tail)[0] + '.html'
    output_filename = os.path.join(head, output_tail)
    points = generate_points(image)
    population = len(points)
    save_dither(points, image)
    grid_cells = [set() for i in range(width * height)]
    line_cells = [set() for i in range(population)]
    print('Initialising acceleration grid')
    for i in range(population):
        recalculate_cells(i, width, points, grid_cells, line_cells)
    while True:
        save_svg(output_filename, width, height, points, scale)
        improve_TSP_solution(points, width, grid_cells, line_cells)


def save_dither(points, image):
    '''Save a copy of the dithered image generated for approximation.'''
    image = image.copy()
    pixels = list(image.getdata())
    pixels = [255] * len(pixels)
    width, height = image.size
    for p in points:
        x = int(p[0])
        y = int(p[1])
        pixels[x+y*width] = 0
    image.putdata(pixels)
    image.save('dither_test.png', 'PNG')


def generate_points(image):
    '''Return a list of points approximating the image.

    All points are offset by small random amounts to prevent parallel lines.'''
    width, height = image.size
    image = image.convert('L')
    pixels = image.getdata()
    points = []
    gap = 1
    r = random
    for y in range(2*gap, height - 2*gap, gap):
        for x in range(2*gap, width - 2*gap, gap):
            if (r()+r()+r()+r()+r()+r())/6 < 1 - pixels[x + y*width]/255:
                        points.append((x + r()*0.5 - 0.25,
                                       y + r()*0.5 - 0.25))
    shuffle(points)
    print('Total number of points', len(points))
    print('Total length', current_total_length(points))
    return points


def current_total_length(points):
    '''Return the total length of the current closed curve approximation.'''
    population = len(points)
    return sum(distance(points[i], points[(i+1)%population])
               for i in range(population))


def recalculate_cells(i, width, points, grid_cells, line_cells):
    '''Recalculate the grid acceleration cells for the line from point i.'''
    for j in line_cells[i]:
        try:
            grid_cells[j].remove(i)
        except KeyError:
            print('grid_cells[j]',grid_cells[j])
            print('i',i)
    line_cells[i] = set()
    add_cells_along_line(i, width, points, grid_cells, line_cells)
    for j in line_cells[i]:
        grid_cells[j].add(i)


def add_cells_along_line(i, width, points, grid_cells, line_cells):
    '''Add each grid cell that lies on the line from point i.'''
    population = len(points)
    start_coords = points[i]
    start_x, start_y = start_coords
    end_coords = points[(i+1) % population]
    end_x, end_y = end_coords
    gradient = (end_y - start_y) / (end_x - start_x)
    y_intercept = start_y - gradient * start_x
    total_distance = distance(start_coords, end_coords)
    x_direction = end_x - start_x
    y_direction = end_y - start_y
    x, y = start_x, start_y
    grid_x, grid_y = int(x), int(y)
    grid_index = grid_x + grid_y * width
    line_cells[i].add(grid_index)
    while True:
        if x_direction > 0:
            x_line = int(x + 1)
        else:
            x_line = int(x)
            if x_line == x:
                x_line = x - 1
        if y_direction > 0:
            y_line = int(y + 1)
        else:
            y_line = int(y)
            if y_line == y:
                y_line = y - 1
        x_line_intersection = gradient * x_line + y_intercept
        y_line_intersection = (y_line - y_intercept) / gradient
        x_line_distance = distance(start_coords, (x_line, x_line_intersection))
        y_line_distance = distance(start_coords, (y_line_intersection, y_line))
        if (x_line_distance > total_distance and
            y_line_distance > total_distance):
            break
        if x_line_distance < y_line_distance:
            x = x_line
            y = gradient * x_line + y_intercept
        else:
            y = y_line
            x = (y_line - y_intercept) / gradient
        grid_x = int(x - (x_direction < 0) * (x == int(x)))
        grid_y = int(y - (y_direction < 0) * (y == int(y)))
        grid_index = grid_x + grid_y * width
        line_cells[i].add(grid_index)


def improve_TSP_solution(points, width, grid_cells, line_cells,
                         performance=[0,0,0], total_length=None):
    '''Apply 3 approaches, allocating time to each based on performance.'''
    population = len(points)
    if total_length is None:
        total_length = current_total_length(points)

    print('Swapping pairs of vertices')
    if performance[0] == max(performance):
        time_limit = 300
    else:
        time_limit = 10
    print('    Aiming for {} seconds'.format(time_limit))
    start_time = perf_counter()
    for n in range(1000000):
        swap_two_vertices(points, width, grid_cells, line_cells)
        if perf_counter() - start_time > time_limit:
            break
    time_taken = perf_counter() - start_time
    old_length = total_length
    total_length = current_total_length(points)
    performance[0] = (old_length - total_length) / time_taken
    print('    Time taken', time_taken)
    print('    Total length', total_length)
    print('    Performance', performance[0])

    print('Moving single vertices')
    if performance[1] == max(performance):
        time_limit = 300
    else:
        time_limit = 10
    print('    Aiming for {} seconds'.format(time_limit))
    start_time = perf_counter()
    for n in range(1000000):
        move_a_single_vertex(points, width, grid_cells, line_cells)
        if perf_counter() - start_time > time_limit:
            break
    time_taken = perf_counter() - start_time
    old_length = total_length
    total_length = current_total_length(points)
    performance[1] = (old_length - total_length) / time_taken
    print('    Time taken', time_taken)
    print('    Total length', total_length)
    print('    Performance', performance[1])

    print('Uncrossing lines')
    if performance[2] == max(performance):
        time_limit = 60
    else:
        time_limit = 10
    print('    Aiming for {} seconds'.format(time_limit))
    start_time = perf_counter()
    for n in range(1000000):
        uncross_lines(points, width, grid_cells, line_cells)
        if perf_counter() - start_time > time_limit:
            break
    time_taken = perf_counter() - start_time        
    old_length = total_length
    total_length = current_total_length(points)
    performance[2] = (old_length - total_length) / time_taken
    print('    Time taken', time_taken)
    print('    Total length', total_length)
    print('    Performance', performance[2])


def swap_two_vertices(points, width, grid_cells, line_cells):
    '''Attempt to find a pair of vertices that reduce length when swapped.'''
    population = len(points)
    for n in range(100):
        candidates = sample(range(population), 2)
        befores = [(candidates[i] - 1) % population
                   for i in (0,1)]
        afters = [(candidates[i] + 1) % population for i in (0,1)]
        current_distance = sum((distance(points[befores[i]],
                                         points[candidates[i]]) +
                                distance(points[candidates[i]],
                                         points[afters[i]]))
                               for i in (0,1))
        (points[candidates[0]],
         points[candidates[1]]) = (points[candidates[1]],
                                   points[candidates[0]])
        befores = [(candidates[i] - 1) % population
                   for i in (0,1)]
        afters = [(candidates[i] + 1) % population for i in (0,1)]
        new_distance = sum((distance(points[befores[i]],
                                     points[candidates[i]]) +
                            distance(points[candidates[i]],
                                     points[afters[i]]))
                           for i in (0,1))
        if new_distance > current_distance:
            (points[candidates[0]],
             points[candidates[1]]) = (points[candidates[1]],
                                       points[candidates[0]])
        else:
            modified_points = tuple(set(befores + candidates))
            for k in modified_points:
                recalculate_cells(k, width, points, grid_cells, line_cells)
            return


def move_a_single_vertex(points, width, grid_cells, line_cells):
    '''Attempt to find a vertex that reduces length when moved elsewhere.'''
    for n in range(100):
        population = len(points)
        candidate = randrange(population)
        offset = randrange(2, population - 1)
        new_location = (candidate + offset) % population
        before_candidate = (candidate - 1) % population
        after_candidate = (candidate + 1) % population
        before_new_location = (new_location - 1) % population
        old_distance = (distance(points[before_candidate], points[candidate]) +
                        distance(points[candidate], points[after_candidate]) +
                        distance(points[before_new_location],
                                 points[new_location]))
        new_distance = (distance(points[before_candidate],
                                 points[after_candidate]) +
                        distance(points[before_new_location],
                                 points[candidate]) +
                        distance(points[candidate], points[new_location]))
        if new_distance <= old_distance:
            if new_location < candidate:
                points[:] = (points[:new_location] +
                             points[candidate:candidate + 1] +
                             points[new_location:candidate] +
                             points[candidate + 1:])
                for k in range(candidate - 1, new_location, -1):
                    for m in line_cells[k]:
                        grid_cells[m].remove(k)
                    line_cells[k] = line_cells[k - 1]
                    for m in line_cells[k]:
                        grid_cells[m].add(k)
                for k in ((new_location - 1) % population,
                          new_location, candidate):
                    recalculate_cells(k, width, points, grid_cells, line_cells)
            else:
                points[:] = (points[:candidate] +
                             points[candidate + 1:new_location] +
                             points[candidate:candidate + 1] +
                             points[new_location:])
                for k in range(candidate, new_location - 3):
                    for m in line_cells[k]:
                        grid_cells[m].remove(k)
                    line_cells[k] = line_cells[k + 1]
                    for m in line_cells[k]:
                        grid_cells[m].add(k)
                for k in ((candidate - 1) % population,
                          new_location - 2, new_location - 1):
                    recalculate_cells(k, width, points, grid_cells, line_cells)
            return


def uncross_lines(points, width, grid_cells, line_cells):
    '''Attempt to find lines that are crossed, and reverse path to uncross.'''
    population = len(points)
    for n in range(100):
        i = randrange(population)
        start_1 = points[i]
        end_1 = points[(i + 1) % population]
        if not line_cells[i]:
            recalculate_cells(i, width, points, grid_cells, line_cells)
        for cell in line_cells[i]:
            for j in grid_cells[cell]:
                if i != j and i != (j+1)%population and i != (j-1)%population:
                    start_2 = points[j]
                    end_2 = points[(j + 1) % population]
                    if are_crossed(start_1, end_1, start_2, end_2):
                        if i < j:
                            points[i + 1:j + 1] = reversed(points[i + 1:j + 1])
                            for k in range(i, j + 1):
                                recalculate_cells(k, width, points, grid_cells,
                                                  line_cells)
                        else:
                            points[j + 1:i + 1] = reversed(points[j + 1:i + 1])
                            for k in range(j, i + 1):
                                recalculate_cells(k, width, points, grid_cells,
                                                  line_cells)
                        return


def are_crossed(start_1, end_1, start_2, end_2):
    '''Return True if the two lines intersect.'''
    if end_1[0]-start_1[0] and end_2[0]-start_2[0]:
        gradient_1 = (end_1[1]-start_1[1])/(end_1[0]-start_1[0])
        gradient_2 = (end_2[1]-start_2[1])/(end_2[0]-start_2[0])
        if gradient_1-gradient_2:
            intercept_1 = start_1[1] - gradient_1 * start_1[0]
            intercept_2 = start_2[1] - gradient_2 * start_2[0]        
            x = (intercept_2 - intercept_1) / (gradient_1 - gradient_2)
            if (x-start_1[0]) * (end_1[0]-x) > 0 and (x-start_2[0]) * (end_2[0]-x) > 0:
                return True


def distance(point_1, point_2):
    '''Return the Euclidean distance between the two points.'''
    return sum((point_1[i] - point_2[i]) ** 2 for i in (0, 1)) ** 0.5


def save_svg(filename, width, height, points, scale):
    '''Save a file containing an SVG path of the points.'''
    print('Saving partial solution\n')
    with open(filename, 'w') as file:
        file.write(content(width, height, points, scale))


def content(width, height, points, scale):
    '''Return the full content to be written to the SVG file.'''
    return (header(width, height, scale) +
            specifics(points, scale) +
            footer()
            )


def header(width, height,scale):
    '''Return the text of the SVG header.'''
    return ('<?xml version="1.0"?>\n'
            '<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"\n'
            '    "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">\n'
            '\n'
            '<svg width="{0}" height="{1}">\n'
            '<title>Traveling Salesman Problem</title>\n'
            '<desc>An approximate solution to the Traveling Salesman Problem</desc>\n'
            ).format(scale*width, scale*height)


def specifics(points, scale):
    '''Return text for the SVG path command.'''
    population = len(points)
    x1, y1 = points[-1]
    x2, y2 = points[0]
    x_mid, y_mid = (x1 + x2) / 2, (y1 + y2) / 2
    text = '<path d="M{},{} L{},{} '.format(x1, y1, x2, y2)
    for i in range(1, population):
        text += 'L{},{} '.format(*points[i])
    text += '" stroke="black" fill="none" stroke-linecap="round" transform="scale({0},{0})" vector-effect="non-scaling-stroke" stroke-width="3"/>'.format(scale)
    return text


def footer():
    '''Return the closing text of the SVG file.'''
    return '\n</svg>\n'


if __name__ == '__main__':
    import sys
    arguments = sys.argv[1:]
    if arguments:
        make_line_picture(arguments[0])
    else:
        print('Required argument: image file')

Program wykorzystuje 3 różne podejścia do ulepszania rozwiązania i mierzy wydajność na sekundę dla każdego z nich. Czas przydzielony na każde podejście jest dostosowywany, aby zapewnić większość czasu na to, które podejście najlepiej sprawdza się w danym momencie.

Początkowo próbowałem zgadnąć, jaki procent czasu należy przeznaczyć na każde podejście, ale okazuje się, że to, które podejście jest najskuteczniejsze, różni się znacznie w trakcie procesu, więc dużą różnicą jest automatyczne dostosowywanie.

Trzy proste podejścia to:

  1. Wybierz losowo dwa punkty i zamień je, jeśli nie zwiększy to całkowitej długości.
  2. Wybierz losowo jeden punkt i losowe przesunięcie wzdłuż listy punktów i przesuń go, jeśli długość się nie zwiększy.
  3. Wybierz losowo linię i sprawdź, czy jakaś inna linia przecina ją, odwracając dowolny odcinek ścieżki, który powoduje krzyż.

Dla podejścia 3 używana jest siatka, zawierająca wszystkie linie przechodzące przez daną komórkę. Zamiast sprawdzać przecięcie każdej linii na stronie, sprawdzane są tylko te, które mają wspólną komórkę siatki.


Pomysł na wykorzystanie problemu sprzedawcy podróżującego wpadłem na post z bloga, który widziałem przed opublikowaniem tego wyzwania, ale nie mogłem go wyśledzić, kiedy opublikowałem tę odpowiedź. Wierzę, że obraz w tym wyzwaniu został również stworzony przy użyciu podejścia sprzedawcy podróżującego, w połączeniu z pewnego rodzaju wygładzaniem ścieżki w celu usunięcia ostrych zakrętów.

Nadal nie mogę znaleźć konkretnego wpisu na blogu, ale teraz znalazłem odniesienie do oryginalnych artykułów, w których Mona Lisa została wykorzystana do zademonstrowania problemu sprzedawcy podróżującego .

Implementacja TSP tutaj jest podejściem hybrydowym, z którym eksperymentowałem dla zabawy dla tego wyzwania. Nie czytałem powiązanych artykułów, kiedy to opublikowałem. Moje podejście jest boleśnie powolne w porównaniu. Zwróć uwagę, że mój obraz tutaj wykorzystuje mniej niż 10 000 punktów i zebranie go zajmuje wiele godzin, aby nie przekraczać linii. Przykładowy obraz w linku do artykułów wykorzystuje 100 000 punktów ...

Niestety większość linków wydaje się już martwa, ale artykuł „TSP Art” autorstwa Craiga S. Kaplana i Roberta Boscha 2005 nadal działa i daje ciekawy przegląd różnych podejść.


1
Wow, to jest to naprawdę miły =) (Jeśli chcesz mi zrobić animację przepływu krzywa skracania zbyt prostu zapewnić CSV lub coś podobnego z uporządkowanej listy współrzędnych punktów).
flawr

@flawr dziękuję! Jeśli chodzi o uporządkowaną listę współrzędnych punktów, to prawie 10 000 punktów dla twarzy Mona Lisa. Dla większych obrazów byłoby to bliżej 100 000 punktów. Dlatego nie opublikowałem tutaj tekstu SVG ... :)
trichoplax

Cóż, możesz użyć pastebin.com lub czegoś podobnego, ale nie chcę cię zmuszać, to twoja decyzja (nie jestem dobry w Python =)
flawr

@flawr Nie chciałbym, abyś musiał czekać godzinami na uruchomienie programu. Nie
dodam

Nigdy nie wpadłbym na pomysł TSP dla takich rzeczy! Zdobądź głos!
sergiol

24

Java - Oscylacje

Program rysuje zamkniętą ścieżkę i dodaje oscylacje, których amplituda i częstotliwość oparte są na jasności obrazu. „Narożniki” ścieżki nie mają oscylacji, aby upewnić się, że ścieżka się nie przecina.

wprowadź opis zdjęcia tutaj

package trace;

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;

import javax.imageio.ImageIO;

import snake.Image;

public class Main5 {


    private final static int MULT = 3;
    private final static int ROWS = 80; // must be an even number
    private final static int COLS = 40;

    public static void main(String[] args) throws IOException {
        BufferedImage src = ImageIO.read(Image.class.getClassLoader().getResourceAsStream("input.png"));
        BufferedImage dest = new BufferedImage(src.getWidth()*MULT, src.getHeight()*MULT, BufferedImage.TYPE_INT_RGB);

        int [] white = {255, 255, 255};
        for (int y = 0; y < dest.getHeight(); y++) {
            for (int x = 0; x < dest.getWidth(); x++) {
                dest.getRaster().setPixel(x, y, white);
            }
        }
        for (int j = 0; j < ROWS; j++) {
            if (j%2 == 0) {
                for (int i = j==0 ? 0 : 1; i < COLS-1; i++) {
                    drawLine(dest, src, (i+.5)*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS, (i+1.5)*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS,
                            i > 1 && i < COLS-2);
                }

                drawLine(dest, src, (COLS-.5)*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS, (COLS-.5)*dest.getWidth()/COLS, (j+1.5)*dest.getHeight()/ROWS, false);
            } else {
                for (int i = COLS-2; i >= (j == ROWS - 1 ? 0 : 1); i--) {
                    drawLine(dest, src, (i+.5)*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS, (i+1.5)*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS,
                            i > 1 && i < COLS-2);
                }
                if (j < ROWS-1) {
                    drawLine(dest, src, (1.5)*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS, (1.5)*dest.getWidth()/COLS, (j+1.5)*dest.getHeight()/ROWS, false);
                }
            }
            if (j < ROWS-1) {
                drawLine(dest, src, 0.5*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS, 0.5*dest.getWidth()/COLS, (j+1.5)*dest.getHeight()/ROWS, false);
            }
        }
        ImageIO.write(dest, "png", new File("output.png"));
    }

    private static void drawLine(BufferedImage dest, BufferedImage src, double x1, double y1, double x2, double y2, boolean oscillate) {
        int [] black = {0, 0, 0};

        int col = smoothPixel((int)((x1*.5 + x2*.5) / MULT), (int)((y1*.5+y2*.5) / MULT), src);
        int fact = (255 - col) / 32;
        if (fact > 5) fact = 5;
        double dx = y1 - y2;
        double dy = - (x1 - x2);
        double dist = 2 * (Math.abs(x1 - x2) + Math.abs(y1 - y2)) * (fact + 1);
        for (int i = 0; i <= dist; i++) {
            double amp = oscillate ? (1 - Math.cos(fact * i*Math.PI*2/dist)) * 12 : 0;
            double x = (x1 * i + x2 * (dist - i)) / dist;
            double y = (y1 * i + y2 * (dist - i)) / dist;
            x += dx * amp / COLS;
            y += dy * amp / ROWS;
            dest.getRaster().setPixel((int)x, (int)y, black);
        }
    }

    public static int smoothPixel(int x, int y, BufferedImage src) {
        int sum = 0, count = 0;
        for (int j = -2; j <= 2; j++) {
            for (int i = -2; i <= 2; i++) {
                if (x + i >= 0 && x + i < src.getWidth()) {
                    if (y + j >= 0 && y + j < src.getHeight()) {
                        sum += src.getRGB(x + i, y + j) & 255;
                        count++;
                    }
                }
            }
        }
        return sum / count;
    }
}

Poniżej porównywalny algorytm oparty na spirali. ( Wiem, że ścieżka się nie zamyka i na pewno przecina , po prostu umieszczam ją ze względu na sztukę :-)

wprowadź opis zdjęcia tutaj


Szczególnie podoba mi się efekt wizualny spirali!
Czy

Ja też, dziękuję za udostępnienie! (Jeśli chcesz, możesz również zrobić uporządkowaną listę punktów ścieżki, a ja zobaczę, czy mogę zrobić animację z tym też =)
flawr

@github Dziękujemy za konstruktywne komentarze.
Arnaud

1
+1 ode mnie - idealnie pasuje teraz do reguł i uwielbiam płynne przejścia, które daje zmienna częstotliwość.
trichoplax

21

Java - Ścieżka rekurencyjna

Zaczynam od zamkniętej ścieżki 2x3. Skanuję każdą komórkę ścieżki i dzielę ją na nową pod ścieżkę 3x3. Za każdym razem staram się wybrać ścieżkę podrzędną 3x3, która „wygląda jak” oryginalny obraz. Powyższy proces powtarzam 4 razy.

wprowadź opis zdjęcia tutaj

wprowadź opis zdjęcia tutaj

wprowadź opis zdjęcia tutaj

Oto kod:

package divide;

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import javax.imageio.ImageIO;

import snake.Image;

public class Divide {

    private final static int MULT = 3;
    private final static int ITERATIONS = 4;

    public static void main(String[] args) throws IOException {
        BufferedImage src = ImageIO.read(Image.class.getClassLoader().getResourceAsStream("input.png"));
        BufferedImage dest = new BufferedImage(src.getWidth() * MULT, src.getHeight() * MULT, BufferedImage.TYPE_INT_RGB);
        for (int y = 0; y < src.getHeight() * MULT; y++) {
            for (int x = 0; x < src.getWidth() * MULT; x++) {
                dest.getRaster().setPixel(x, y, new int [] {255, 255, 255});
            }
        }
        List<String> tab = new ArrayList<String>();
        tab.add("rg");
        tab.add("||"); 
        tab.add("LJ");

        for (int k = 1; k <= ITERATIONS; k++) {
            boolean choose = k>=ITERATIONS-1;
            // multiply size by 3
            tab = iterate(src, tab, choose);
            // fill in the white space - if needed
            expand(src, tab, " r", " L", "r-", "L-", choose);
            expand(src, tab, "g ", "J ", "-g", "-J", choose);
            expand(src, tab, "LJ", "  ", "||", "LJ", choose);
            expand(src, tab, "  ", "rg", "rg", "||", choose);
            expand(src, tab, "L-J", "   ", "| |", "L-J", choose);
            expand(src, tab, "   ", "r-g", "r-g", "| |", choose);
            expand(src, tab, "| |", "| |", "Lg|", "rJ|", choose);
            expand(src, tab, "--", "  ", "gr", "LJ", choose);
            expand(src, tab, "  ", "--", "rg", "JL", choose);
            expand(src, tab, "| ", "| ", "Lg", "rJ", choose);
            expand(src, tab, " |", " |", "rJ", "Lg", choose);

            for (String s : tab) {
                System.out.println(s);
            }
            System.out.println();
        }

        for (int j = 0; j < tab.size(); j++) {
            String line = tab.get(j);
            for (int i = 0; i < line.length(); i++) {
                char c = line.charAt(i);
                int xleft = i * dest.getWidth() / line.length();
                int xright = (i+1) * dest.getWidth() / line.length();
                int ytop = j * dest.getHeight() / tab.size();
                int ybottom = (j+1) * dest.getHeight() / tab.size();
                int x = (xleft + xright) / 2;
                int y = (ytop + ybottom) / 2;
                if (c == '|') {
                    drawLine(dest, x, ytop, x, ybottom);
                }
                if (c == '-') {
                    drawLine(dest, xleft, y, xright, y);
                }
                if (c == 'L') {
                    drawLine(dest, x, y, xright, y);
                    drawLine(dest, x, y, x, ytop);
                }
                if (c == 'J') {
                    drawLine(dest, x, y, xleft, y);
                    drawLine(dest, x, y, x, ytop);
                }
                if (c == 'r') {
                    drawLine(dest, x, y, xright, y);
                    drawLine(dest, x, y, x, ybottom);
                }
                if (c == 'g') {
                    drawLine(dest, x, y, xleft, y);
                    drawLine(dest, x, y, x, ybottom);
                }
            }

        }

        ImageIO.write(dest, "png", new File("output.png"));

    }


    private static void drawLine(BufferedImage dest, int x1, int y1, int x2, int y2) {
        int dist = Math.max(Math.abs(x1 - x2), Math.abs(y1 - y2));
        for (int i = 0; i <= dist; i++) {
            int x = (x1*(dist - i) + x2 * i) / dist;
            int y = (y1*(dist - i) + y2 * i) / dist;
            dest.getRaster().setPixel(x, y, new int [] {0, 0, 0});
        }
    }

    private static void expand(BufferedImage src, List<String> tab, String p1, String p2, String r1, String r2, boolean choose) {
        for (int k = 0; k < (choose ? 2 : 1); k++) {
            while (true) {
                boolean again = false;
                for (int j = 0; j < tab.size() - 1; j++) {
                    String line1 = tab.get(j);
                    String line2 = tab.get(j+1);
                    int baseScore = evaluateLine(src, j, tab.size(), line1) + evaluateLine(src, j+1, tab.size(), line2);
                    for (int i = 0; i <= line1.length() - p1.length(); i++) {
                        if (line1.substring(i, i + p1.length()).equals(p1)
                                && line2.substring(i, i + p2.length()).equals(p2)) {
                            String nline1 = line1.substring(0,  i) + r1 + line1.substring(i + p1.length());
                            String nline2 = line2.substring(0,  i) + r2 + line2.substring(i + p2.length());
                            int nScore = evaluateLine(src, j, tab.size(), nline1) + evaluateLine(src, j+1, tab.size(), nline2);
                            if (!choose || nScore > baseScore) {
                                tab.set(j, nline1);
                                tab.set(j+1, nline2);
                                again = true;
                                break;
                            }
                        }
                    }
                    if (again) break;
                }
                if (!again) break;
            }
            String tmp1 = r1;
            String tmp2 = r2;
            r1 = p1;
            r2 = p2;
            p1 = tmp1;
            p2 = tmp2;
        }
    }

    private static int evaluateLine(BufferedImage src, int j, int tabSize, String line) {
        int [] color = {0, 0, 0};
        int score = 0;
        for (int i = 0; i < line.length(); i++) {
            char c = line.charAt(i);
            int x = i*src.getWidth() / line.length();
            int y = j*src.getHeight() / tabSize;
            src.getRaster().getPixel(x, y, color);
            if (c == ' ' && color[0] >= 128) score++;
            if (c != ' ' && color[0] < 128) score++;
        }
        return score;
    }



    private static List<String> iterate(BufferedImage src, List<String> tab, boolean choose) {
        int [] color = {0, 0, 0};
        List<String> tab2 = new ArrayList<String>();
        for (int j = 0; j < tab.size(); j++) {
            String line = tab.get(j);
            String l1 = "", l2 = "", l3 = "";
            for (int i = 0; i < line.length(); i++) {
                char c = line.charAt(i);
                List<String []> candidates = replace(c);
                String [] choice = null;
                if (choose) {

                    int best = 0;
                    for (String [] candidate : candidates) {
                        int bright1 = 0;
                        int bright2 = 0;
                        for (int j1 = 0; j1<3; j1++) {
                            int y = j*3+j1;
                            for (int i1 = 0; i1<3; i1++) {
                                int x = i*3+i1;
                                char c2 = candidate[j1].charAt(i1);
                                src.getRaster().getPixel(x*src.getWidth()/(line.length()*3), y*src.getHeight()/(tab.size()*3), color);
                                if (c2 != ' ') bright1++;
                                if (color[0] > 128) bright2++;
                            }
                        }
                        int score = Math.abs(bright1 - bright2);
                        if (choice == null || score > best) {
                            best = score;
                            choice = candidate;
                        }

                    }
                } else {
                    choice = candidates.get(0);
                }
                //String [] r = candidates.get(rand.nextInt(candidates.size()));
                String [] r = choice;
                l1 += r[0];
                l2 += r[1];
                l3 += r[2];
            }
            tab2.add(l1);
            tab2.add(l2);
            tab2.add(l3);
        }
        return tab2;
    }

    private static List<String []> replace(char c) {
        if (c == 'r') {
            return Arrays.asList(
                    new String[] {
                    "r-g",
                    "| L",
                    "Lg "},
                    new String[] {
                    "   ",
                    " r-",
                    " | "}, 
                    new String[] {
                    "   ",
                    "r--",
                    "Lg "}, 
                    new String[] {
                    " rg",
                    " |L",
                    " | "},
                    new String[] {
                    "   ",
                    "  r",
                    " rJ"});            
        } else if (c == 'g') {
            return Arrays.asList(
                    new String[] {
                    "r-g",
                    "J |",
                    " rJ"},                 
                    new String[] {
                    "   ",
                    "-g ",
                    " | "},
                    new String[] {
                    "   ",
                    "--g",
                    " rJ"},
                    new String[] {
                    "rg ",
                    "J| ",
                    " | "},
                    new String[] {
                    "   ",
                    "g  ",
                    "Lg "});
        } else if (c == 'L') {
            return Arrays.asList(
                    new String[] {
                    "rJ ",
                    "| r",
                    "L-J"},
                    new String[] {
                    " | ",
                    " L-",
                    "   "},
                    new String[] {
                    "rJ ",
                    "L--",
                    "   "},
                    new String[] {
                    " | ",
                    " |r",
                    " LJ"},
                    new String[] {
                    " Lg",
                    "  L",
                    "   "});
        } else if (c == 'J') {
            return Arrays.asList(
                    new String[] {
                    " Lg",
                    "g |",
                    "L-J"},
                    new String[] {
                    " | ",
                    "-J ",
                    "   "},
                    new String[] {
                    " Lg",
                    "--J",
                    "   "},
                    new String[] {
                    " | ",
                    "g| ",
                    "LJ "},
                    new String[] {
                    "rJ ",
                    "J  ",
                    "   "});
        } else if (c == '-') {
            return Arrays.asList(
                    new String[] {
                    " rg",
                    "g|L",
                    "LJ "},
                    new String[] {
                    "rg ",
                    "J|r",
                    " LJ"},
                    new String[] {
                    "   ",
                    "---",
                    "   "},
                    new String[] {
                    "r-g",
                    "J L",
                    "   "},
                    new String[] {
                    "   ",
                    "g r",
                    "L-J"},
                    new String[] {
                    "rg ",
                    "JL-",
                    "   "},
                    new String[] {
                    " rg",
                    "-JL",
                    "   "},                 
                    new String[] {
                    "   ",
                    "gr-",
                    "LJ "},
                    new String[] {
                    "   ",
                    "-gr",
                    " LJ"}                                      
                    );                      
        } else if (c == '|') {
            return Arrays.asList(
                    new String[] {
                    " Lg",
                    "r-J",
                    "Lg "},
                    new String[] {
                    "rJ ",
                    "L-g",
                    " rJ"},
                    new String[] {
                    " | ",
                    " | ",
                    " | "},
                    new String[] {
                    " Lg",
                    "  |",
                    " rJ"},
                    new String[] {
                    "rJ ",
                    "|  ",
                    "Lg "},
                    new String[] {
                    " Lg",
                    " rJ",
                    " | "},
                    new String[] {
                    " | ",
                    " Lg",
                    " rJ"},
                    new String[] {
                    "rJ ",
                    "Lg ",
                    " | "},
                    new String[] {
                    " | ",
                    "rJ ",
                    "Lg "}                  
                    );
        } else {
            List<String []> ret = new ArrayList<String []>();
            ret.add(
                    new String[] {
                    "   ",
                    "   ",
                    "   "});
            return ret;
        }

    }
}

2
To wygląda jak jedno z najbardziej innowacyjnych rozwiązań do tej pory! +1 dla Batmana =)
wada

Kocham to.
trichoplax
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.