3D: Dyskretny pojedynek na walki psów (teraz otwarty dla zgłoszeń innych niż Java)


31

AKTUALIZACJA: do klasy samolotu dodano isSuicidal (), co pozwala sprawdzić, czy samolot znajduje się na nieodwracalnym kursie zderzenia ze ścianami !!

AKTUALIZACJA: updateCoolDown () oddzielone od simulateMove ()

AKTUALIZACJA: opakowanie wejściowe inne niż Java, napisane przez Sparr , dostępne do testowania, patrz komentarze

AKTUALIZACJA Zove Games napisała niesamowity wizualizator 3D dla tego KOTH, oto gówniany film na YouTube z PredictAndAVoid walczącymi PredictAndAVoid.

Funkcja simulateMove () klasy Plane została nieznacznie zmodyfikowana, aby nie aktualizowała już chłodzenia, użyj do tego nowej funkcji updateCoolDown () po zakończeniu strzelania. Nowa funkcja isSuicidal () zwraca wartość true, jeśli samolot musi zginąć, użyj go do przycinania ruchów wroga i unikania uderzania w ściany. Aby uzyskać zaktualizowany kod, po prostu zamień klasy Controller i Plane na klasy z repozytorium github.

Opis

Celem tego wyzwania jest zakodowanie dwóch samolotów bojowych , które zmierzą się z dwoma samolotami przez innego zawodnika. Za każdym razem poruszasz się o jedno pole i masz okazję strzelać. To wszystko, to takie proste.

Cóż prawie...

Arena i możliwe ruchy

Arena ma wymiary 14 x 14 x 14 w przestrzeni. samoloty zawodnika 1 rozpoczynają się w miejscach (0,5,0) i (0,8,0), a samoloty zawodnika 2 w (13,5,13) i (13,8,13). Wszystkie samoloty zaczynają się od lotu poziomo od pionowych ścian, do których są najbliżej.

Teraz, gdy lecisz samolotem, a nie helikopterem, nie możesz po prostu dowolnie zmieniać kierunku, a nawet przestać się poruszać, więc każdy samolot ma kierunek i przesuwa jedną płytkę w tym kierunku co turę.

Możliwe kierunki to: północ (N), południe (S), wschód (E), zachód (W), góra (U) i dół (D) oraz dowolna logiczna kombinacja tych sześciu. Gdzie oś NS odpowiada osi x, WE to y i DU do z. NW, SU i NED przychodzą na myśl jako możliwe przykłady kierunków; UD jest doskonałym przykładem nieprawidłowej kombinacji.

Możesz oczywiście zmienić kierunek swoich samolotów, ale jest ograniczenie, możesz zmienić kierunek tylko o maksymalnie 45 stopni. Aby to sobie wyobrazić, chwyć kostkę rubika (wiem, że ją masz) i wyobraź sobie, że wszystkie 26 zewnętrznych małych kostek to możliwe kierunki (jedna litera to twarze, dwie litery to krawędzie, a trzy litery to rogi). Jeśli zmierzasz w kierunku reprezentowanym przez małą kostkę, możesz zmienić kierunek na każdą kostkę, która dotyka twojego (liczy się dotykanie ukośne, ale tylko dotykanie widoczne, to znaczy nie dotykanie przez kostkę).

Po tym, jak wszystkie samoloty wskażą kierunek, w którym chcą się zmienić, robią to i przesuwają jeden kafelek jednocześnie.

Możesz także zdecydować się na ruch we właściwym kierunku, ale kontynuuj lot w kierunku, w którym jedziesz, zamiast zmieniać kierunek w kierunku, w którym się poruszasz. Jest to analogiczne do różnicy między samochodem jadącym za rogiem a samochodem zmieniającym pas.

Strzelanie i umieranie

Możesz strzelać najwyżej raz na rundę i to musi być ustalone w tym samym czasie, kiedy decydujesz, w którym kierunku lecieć i czy chcesz utrzymać swój samolot (a przez to broń) skierowany w tym samym kierunku, czy nie. Kula zostaje wystrzelona zaraz po tym, jak twój samolot się porusza. Po strzale następuje ochłodzenie w jednej turze, w trzeciej kolejce możesz zacząć od nowa. Możesz strzelać tylko w kierunku, w którym lecisz. Kula jest natychmiastowa i leci w linii prostej, aż uderzy w ścianę lub samolot.

Biorąc pod uwagę sposób, w jaki możesz zmieniać kierunek, a także „zmieniać pasy”, oznacza to, że możesz zagrozić kolumną do 3x3 linii przed tobą oprócz niektórych ukośnych, pojedynczych linii.

Jeśli uderzy w samolot, samolot ten umiera i natychmiast znika z planszy (ponieważ całkowicie eksploduje lub coś takiego). Pociski mogą trafić tylko jeden samolot. Pociski strzelają jednocześnie, więc dwa samoloty mogą strzelać do siebie. Dwie kule nie mogą jednak zderzyć się w powietrzu (smutne, wiem).

Jednak dwie płaszczyzny mogą się zderzyć (jeśli kończą się w tym samym sześcianie, a NIE, jeśli przecinają się bez lądowania w tej samej płaszczyźnie), co powoduje śmierć obu płaszczyzn (i całkowite wybuchnięcie). Możesz także wlecieć do ściany, co spowoduje śmierć samolotu i umieszczenie go w kącie, aby pomyśleć o jego działaniach. Kolizje są obsługiwane przed zrobieniem zdjęcia.

Komunikacja z kontrolerem

Przyjmę zgłoszenia w języku Java i innych językach. Jeśli twój wpis jest w Javie, otrzymasz dane wejściowe przez STDIN i dane wyjściowe przez STDOUT.

Jeśli twój wpis jest w Javie, Twój wpis musi rozszerzyć następującą klasę:

package Planes;

//This is the base class players extend.
//It contains the arena size and 4 plane objects representing the planes in the arena.
public abstract class PlaneControl {

    // note that these planes are just for your information, modifying these doesn't affect the actual plane instances, 
    // which are kept by the controller
    protected Plane[] myPlanes = new Plane[2];
    protected Plane[] enemyPlanes = new Plane[2];
    protected int arenaSize;
    protected int roundsLeft;

    ...

    // Notifies you that a new fight is starting
    // FightsFought tells you how many fights will be fought.
    // the scores tell you how many fights each player has won.
    public void newFight(int fightsFought, int myScore, int enemyScore) {}

    // notifies you that you'll be fighting anew opponent.
    // Fights is the amount of fights that will be fought against this opponent
    public void newOpponent(int fights) {}

    // This will be called once every round, you must return an array of two moves.
    // The move at index 0 will be applied to your plane at index 0,
    // The move at index1 will be applied to your plane at index1.
    // Any further move will be ignored.
    // A missing or invalid move will be treated as flying forward without shooting.
    public abstract Move[] act();
}

Instancja utworzona dla tej klasy będzie utrzymywać się przez całą konkurencję, więc możesz przechowywać dowolne dane, które chcesz przechowywać w zmiennych. Przeczytaj komentarze w kodzie, aby uzyskać więcej informacji.

Udostępniłem Ci również następujące klasy pomocników:

package Planes;

//Objects of this class contain all relevant information about a plane
//as well as some helper functions.
public class Plane {
    private Point3D position;
    private Direction direction;
    private int arenaSize;
    private boolean alive = true;
    private int coolDown = 0;

    public Plane(int arenaSize, Direction direction, int x, int y, int z) {}

    public Plane(int arenaSize, Direction direction, Point3D position) {}    

    // Returns the x coordinate of the plane
    public int getX() {}

    // Returns the y coordinate of the plane
    public int getY() {}

    // Returns the z coordinate of the plane
    public int getZ() {}

    // Returns the position as a Point3D.
    public Point3D getPosition() {}

    // Returns the distance between the plane and the specified wall,
    // 0 means right next to it, 19 means at the opposite side.
    // Returns -1 for invalid input.
    public int getDistanceFromWall(char wall) {}

    // Returns the direction of the plane.
    public Direction getDirection() {}

    // Returns all possible turning directions for the plane.
    public Direction[] getPossibleDirections() {}

    // Returns the cool down before the plane will be able to shoot, 
    // 0 means it is ready to shoot this turn.
    public int getCoolDown() {}

    public void setCoolDown(int coolDown) {}

    // Returns true if the plane is ready to shoot
    public boolean canShoot() {}

    // Returns all positions this plane can shoot at (without first making a move).
    public Point3D[] getShootRange() {}

    // Returns all positions this plane can move to within one turn.
    public Point3D[] getRange() {}

    // Returns a plane that represents this plane after making a certain move,
    // not taking into account other planes.
    // Doesn't update cool down, see updateCoolDown() for that.
    public Plane simulateMove(Move move) {}

    // modifies this plane's cool down
    public void updateCoolDown(boolean shot) {
        coolDown = (shot && canShoot())?Controller.COOLDOWN:Math.max(0, coolDown - 1);
    }


    // Returns true if the plane is alive.
    public boolean isAlive() {}

    // Sets alive to the specified value.
    public void setAlive(boolean alive) {}

    // returns a copy of itself.
    public Plane copy() {}

    // Returns a string representing its status.
    public String getAsString() {}

    // Returns a string suitable for passing to a wrapped plane process
    public String getDataString() {}

    // Returns true if a plane is on an irreversable colision course with the wall.
    // Use this along with simulateMove() to avoid hitting walls or prune possible emeny moves.
    public boolean isSuicidal() {}
}


// A helper class for working with directions. 
public class Direction {
    // The three main directions, -1 means the first letter is in the direction, 1 means the second is, 0 means neither is.
    private int NS, WE, DU;

    // Creates a direction from 3 integers.
    public Direction(int NSDir, int WEDir, int DUDir) {}

    // Creates a direction from a directionstring.
    public Direction(String direction) {}

    // Returns this direction as a String.
    public String getAsString() {}

    // Returns The direction projected onto the NS-axis.
    // -1 means heading north.
    public int getNSDir() {}

    // Returns The direction projected onto the WE-axis.
    // -1 means heading west.
    public int getWEDir() {}

    // Returns The direction projected onto the DU-axis.
    // -1 means heading down.
    public int getDUDir() {}

    // Returns a Point3D representing the direction.
    public Point3D getAsPoint3D() {}

    // Returns an array of chars representing the main directions.
    public char[] getMainDirections() {}

    // Returns all possible turning directions.
    public Direction[] getPossibleDirections() {}

    // Returns true if a direction is a valid direction to change to
    public boolean isValidDirection(Direction direction) {}
}

public class Point3D {
    public int x, y, z;

    public Point3D(int x, int y, int z) {}

    // Returns the sum of this Point3D and the one specified in the argument.
    public Point3D add(Point3D point3D) {}

    // Returns the product of this Point3D and a factor.
    public Point3D multiply(int factor) {}

    // Returns true if both Point3D are the same.
    public boolean equals(Point3D point3D) {}

    // Returns true if Point3D is within a 0-based arena of a specified size.
    public boolean isInArena(int size) {}
}


public class Move {
    public Direction direction;
    public boolean changeDirection;
    public boolean shoot;

    public Move(Direction direction, boolean changeDirection, boolean shoot) {}
}

Możesz tworzyć instancje tych klas i korzystać z dowolnej ich funkcji tak, jak chcesz. Pełny kod dla tych klas pomocników można znaleźć tutaj .

Oto przykład tego, jak może wyglądać Twoje zgłoszenie (mam nadzieję, że poradzisz sobie lepiej niż ja, ale większość meczów z tymi samolotami kończy się lataniem w ścianę, pomimo dołożenia wszelkich starań, aby ominąć ścianę.):

package Planes;

public class DumbPlanes extends PlaneControl {

    public DumbPlanes(int arenaSize, int rounds) {
        super(arenaSize, rounds);
    }

    @Override
    public Move[] act() {
        Move[] moves = new Move[2];
        for (int i=0; i<2; i++) {
            if (!myPlanes[i].isAlive()) {
                moves[i] = new Move(new Direction("N"), false, false); // If we're dead we just return something, it doesn't matter anyway.
                continue;
            }
            Direction[] possibleDirections = myPlanes[i].getPossibleDirections(); // Let's see where we can go.

            for (int j=0; j<possibleDirections.length*3; j++) {

                int random = (int) Math.floor((Math.random()*possibleDirections.length)); // We don't want to be predictable, so we pick a random direction out of the possible ones.

                if (myPlanes[i].getPosition().add(possibleDirections[random].getAsPoint3D()).isInArena(arenaSize)) { // We'll try not to fly directly into a wall.
                    moves[i] = new Move(possibleDirections[random], Math.random()>0.5, myPlanes[i].canShoot() && Math.random()>0.2);
                    continue; // I'm happy with this move for this plane.
                }

                // Uh oh.
                random = (int) Math.floor((Math.random()*possibleDirections.length));
                moves[i] = new Move(possibleDirections[random], Math.random()>0.5, myPlanes[i].canShoot() && Math.random()>0.2);
            }
        }

        return moves;
    }

    @Override
    public void newFight(int fightsFought, int myScore, int enemyScore) {
        // Using information is for schmucks.
    }

    @Override
    public void newOpponent(int fights) {
        // What did I just say about information?
    }
}

DumbPlanes dołączy do turnieju wraz z innymi wpisami, więc jeśli skończysz ostatni, to twoja wina, że ​​przynajmniej nie radzisz sobie lepiej niż DumbPlanes.

Ograniczenia

Obowiązują ograniczenia wymienione w wiki KOTH :

  • Wszelkie próby majsterkowania przy kontrolerze, środowisku wykonawczym lub innych zgłoszeniach zostaną zdyskwalifikowane. Wszystkie zgłoszenia powinny działać tylko z danymi wejściowymi i pamięcią.
  • Boty nie powinny być pisane w celu pokonania lub wspierania określonych innych botów. (Może to być pożądane w rzadkich przypadkach, ale jeśli nie jest to podstawowa koncepcja wyzwania, lepiej je wykluczyć).
  • Zastrzegam sobie prawo do zdyskwalifikowania zgłoszeń, które zużywają zbyt dużo czasu lub pamięci, aby przeprowadzić testy z rozsądną ilością zasobów.
  • Bot nie może wdrożyć dokładnie tej samej strategii, co istniejąca, celowo lub przypadkowo.

Testowanie zgłoszenia

Pobierz kod kontrolera stąd . Dodaj swoje zgłoszenie jako Something.java. Zmodyfikuj Controller.java, aby uwzględnić wpisy dla swojego samolotu we wpisach [] i nazwach []. Skompiluj wszystko jako projekt Eclipse lub za pomocą javac -d . *.java, a następnie uruchom Kontroler za pomocą java Planes/Controller. Pojawi się dziennik zawodów test.txtz tablicą wyników na końcu. Możesz także wywoływać matchUp()bezpośrednio z dwoma wpisami jako argumentami, aby po prostu przetestować dwie płaszczyzny względem siebie.

Wygrać walkę

Zwycięzcą walki jest ten, który leci ostatnim samolotem, jeśli po 100 turach pozostanie więcej niż 1 drużyna, drużyna z największą ilością pozostałych samolotów wygrywa. Jeśli to jest równe, to remis.

Punktacja i konkurencja

Następny oficjalny turniej zostanie rozegrany, gdy skończy się aktualna nagroda.

Każdy wpis będzie walczył z każdym innym (przynajmniej) 100 razy, zwycięzcą każdego pojedynku jest ten, który wygra najwięcej ze 100 i otrzyma 2 punkty. W przypadku losowania oba zgłoszenia otrzymują 1 punkt.

Zwycięzcą konkursu jest ten, który zdobył najwięcej punktów. W przypadku remisu zwycięzcą jest ten, który wygrał w meczu pomiędzy losowanymi zakładami.

W zależności od liczby zgłoszeń, ilość walk między wpisami może zostać znacznie zwiększona, mogę również wybrać 2-4 najlepsze wpisy po pierwszym turnieju i ustawić elitarny turniej między tymi wejściami z większą liczbą walk (i ewentualnie więcej rund na walka)

(wstępna) tablica wyników

Mamy nowy wpis, który zdecydowanie zajmuje drugie miejsce w kolejnym ekscytującym turnieju , wydaje się, że Crossfire jest niezwykle trudny do strzelenia dla wszystkich oprócz PredictAndAvoid. Pamiętaj, że ten turniej był rozgrywany tylko z 10 walkami między każdym zestawem samolotów i dlatego nie jest do końca dokładnym przedstawieniem tego, jak się rzeczy mają.

----------------------------
¦ 1. PredictAndAvoid:   14 ¦
¦ 2. Crossfire:         11 ¦
¦ 3. Weeeeeeeeeeee:      9 ¦
¦ 4. Whirligig:          8 ¦
¦ 4. MoveAndShootPlane:  8 ¦
¦ 6. StarFox:            4 ¦
¦ 6. EmoFockeWulf:       2 ¦
¦ 7. DumbPlanes:         0 ¦
----------------------------

Oto przykład danych wyjściowych z opakowania innego niż Java:

NEW CONTEST 14 20 wskazuje, że rozpoczyna się nowy konkurs na arenie 14x14x14 i będzie on obejmować 20 tur na walkę.

NEW OPPONENT 10 oznacza, że ​​stoisz w obliczu nowego przeciwnika i będziesz z nim walczył 10 razy

NEW FIGHT 5 3 2 wskazuje, że rozpoczyna się nowa walka z obecnym przeciwnikiem, że do tej pory walczyłeś z nim 5 razy, wygrywając 3 i przegrywając 2 walki

ROUNDS LEFT 19 wskazuje, że w bieżącej walce pozostało 19 rund

NEW TURN wskazuje, że masz zamiar otrzymywać dane dla wszystkich czterech samolotów w tej rundzie walki

alive 13 8 13 N 0
alive 13 5 13 N 0
dead 0 0 0 N 0
alive 0 8 0 S 0

Te cztery linie wskazują, że oba wasze samoloty żyją, odpowiednio o współrzędnych [13,8,13] i [13,5,13], obie skierowane na północ, obie z zerowym czasem odnowienia. Pierwszy samolot wroga jest martwy, a drugi żyje, w [0,8,0] i skierowany na południe z zerowym czasem odnowienia.

W tym momencie twój program powinien wypisać dwa wiersze podobne do następujących:

NW 0 1
SU 1 0

Oznacza to, że twój pierwszy samolot będzie podróżował po północnym zachodzie, nie skręcając z bieżącego kierunku i strzelając, jeśli to możliwe. Drugi samolot będzie podróżował SouthUp, obracając się w stronę SouthUp, nie strzelając.

Teraz ROUNDS LEFT 18następuje NEW TURNitd. Trwa to do momentu wygrania przez kogoś lub przekroczenia limitu czasu, w którym to momencie otrzymujesz kolejną NEW FIGHTlinię ze zaktualizowaną liczbą walk i wynikami, być może poprzedzoną znakiem NEW OPPONENT.


Jeśli ktoś potrzebuje pomocy w tym wyzwaniu, możesz wejść na czat, który utworzyłem dla tego wyzwania.
overactor

Czy samoloty zaczynają lot na wschód / zachód czy północ / południe? albo coś innego?
pseudonim

2
@overactor w kodzie odnowienia występuje błąd. Używasz simulateMove w sekcji „Oblicz nowe pozycje”, która oprócz odnawiania nowych pozycji skraca czas odnowienia. Oznacza to, że samolot może strzelać w każdej turze, jeśli zignoruje swój własny licznik czasu odnowienia.
Sparr

2
Dla tych, którzy mogą uznać to za przydatne, to wyrażenie regularne przeszuka dziennik, aby znaleźć miejsce, w którym strzela twój samolot ^ Przenieś (. *?) Strzel: prawda $ (zamień „Przenieś” na swoje imię i upewnij się, że. Nie przechwytuje nowego linii)
user2813274,

1
oto zatwierdzenie dla mojego opakowania samolotu wraz z głupim samolotem pytona. Bardzo bym chciał, gdyby ktoś napisał mądrzejszy samolot w perlu / python / lua / bash / cokolwiek i dałby mi jakieś informacje zwrotne na temat tego, czy / jak opakowanie dla ciebie działa. github.com/sparr/Dogfight-KOTH/commit/… jeśli ludzie mogą / będą z tego korzystać, możemy wprowadzić to do repozytorium @ overactor i zezwolić na przesyłanie w dowolnym języku.
Sparr

Odpowiedzi:


5

Ogień krzyżowy

Moim początkowym pomysłem było strzelanie do wrogiego samolotu jednocześnie dwoma moimi samolotami, ale nie mogłem tego wypracować ... Więc oto jest samolot, który próbuje trzymać się z dala od ścian i poza zasięgiem strzelania wróg. Samoloty nigdy nie powinny kolidować ani strzelać do samolotów przyjaznych.

Edycja: metoda possibleHitszawsze zwracała 0, po jej naprawieniu i dodaniu kilku drobnych usprawnień, działa lepiej niż wcześniej.

package Planes;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

public class Crossfire extends PlaneControl {
    final List<Point3D> dangerList = new ArrayList<>(); //danger per point
    final List<Plane> targets = new ArrayList<>(); //targets being shot
    Plane[] futurePlanes = null; //future friendly planes

    public Crossfire(int arenaSize, int rounds) {
        super(arenaSize, rounds);
    }

    @Override
    public Move[] act() {
        dangerList.clear();     //initialize
        targets.clear();
        final int PLANE_COUNT = myPlanes.length;
        Move[] moves = new Move[PLANE_COUNT];
        futurePlanes = new Plane[PLANE_COUNT];

        // calculate danger per field/enemy
        for (int i = 0; i < PLANE_COUNT; i++) {
            updateDanger(enemyPlanes[i]);
        }   

        // get best moves for each plane
        for (int i = 0; i < PLANE_COUNT; i++) {         
            moves[i] = getBestMove(myPlanes[i]);
            futurePlanes[i] = myPlanes[i].simulateMove(moves[i]);
            updateTargets(futurePlanes[i]);
        }

        // try to shoot if no friendly plane is hit by this bullet
        for (int i = 0; i < myPlanes.length; i++) {
            if (myPlanes[i].canShoot() && canShootSafely(futurePlanes[i]) && possibleHits(futurePlanes[i]) > 0) {
                moves[i].shoot = true;
            }
        }

        return moves;
    }

    private void updateTargets(Plane plane) {
        if (!plane.canShoot() || !canShootSafely(plane)) {
            return;
        }
        Point3D[] range = plane.getShootRange();
        for (Plane enemyPlane : enemyPlanes) {
            for (Move move : getPossibleMoves(enemyPlane)) {
                Plane simPlane = enemyPlane.simulateMove(move);
                for (Point3D dest : range) {
                    if (dest.equals(simPlane.getPosition())) {
                        targets.add(enemyPlane);
                    }
                }
            }           
        }
    }

    private void updateDanger(Plane plane) {
        if (!plane.isAlive()) {
            return;
        }
        for (Move move : getPossibleMoves(plane)) {
            Plane futurePlane = plane.simulateMove(move);
            // add position (avoid collision)
            if (!isOutside(futurePlane)) {
                dangerList.add(futurePlane.getPosition());
                // avoid getting shot
                if (plane.canShoot()) {
                    for (Point3D dest : futurePlane.getShootRange()) {
                        dangerList.add(dest);
                    }
                }
            }
        }
    }

    private Move getBestMove(Plane plane) {
        if (!plane.isAlive()) {
            return new Move(new Direction("N"), false, false);
        }

        int leastDanger = Integer.MAX_VALUE;
        Move bestMove = new Move(new Direction("N"), false, false);
        for (Move move : getPossibleMoves(plane)) {
            Plane futurePlane = plane.simulateMove(move);
            int danger = getDanger(futurePlane) - (possibleHits(futurePlane) *2);
            if (danger < leastDanger) {
                leastDanger = danger;
                bestMove = move;
            }
        }
        return bestMove;
    }

    private int getDanger(Plane plane) {
        if (!plane.isAlive() || hugsWall(plane) || collidesWithFriend(plane) || isOutside(plane)) {
            return Integer.MAX_VALUE - 1;
        }
        int danger = 0;
        Point3D pos = plane.getPosition();
        for (Point3D dangerPoint : dangerList) {
            if (pos.equals(dangerPoint)) {
                danger++;
            }
        }
        // stay away from walls
        for (char direction : plane.getDirection().getMainDirections()) {
            if (plane.getDistanceFromWall(direction) <= 2) {
                danger++;
            }
        }
        return danger;
    }

    private boolean collidesWithFriend(Plane plane) {
        for (Plane friendlyPlane : futurePlanes) {
            if (friendlyPlane != null && plane.getPosition().equals(friendlyPlane.getPosition())) {
                return true;
            }
        }
        return false;
    }

    private boolean hugsWall(Plane plane) {
        if (!plane.isAlive() || isOutside(plane)) {
            return true;
        }
        char[] mainDirs = plane.getDirection().getMainDirections();
        if (mainDirs.length == 1) {
            return plane.getDistanceFromWall(mainDirs[0]) == 0;
        }
        if (mainDirs.length == 2) {
            return plane.getDistanceFromWall(mainDirs[0]) <= 1
                    && plane.getDistanceFromWall(mainDirs[1]) <= 1;
        }
        if (mainDirs.length == 3) {
            return plane.getDistanceFromWall(mainDirs[0]) <= 1
                    && plane.getDistanceFromWall(mainDirs[1]) <= 1
                    && plane.getDistanceFromWall(mainDirs[2]) <= 1;
        }
        return false;
    }

    private Set<Move> getPossibleMoves(Plane plane) {
        Set<Move> possibleMoves = new HashSet<>();
        for (Direction direction : plane.getPossibleDirections()) {
            possibleMoves.add(new Move(direction, false, false));
            possibleMoves.add(new Move(direction, true, false));
        }
        return possibleMoves;
    }

    private boolean canShootSafely(Plane plane) {
        if (!plane.canShoot() || isOutside(plane)) {
            return false;
        }
        for (Point3D destPoint : plane.getShootRange()) {
            for (Plane friendlyPlane : futurePlanes) {
                if (friendlyPlane == null) {
                    continue;
                }
                if (friendlyPlane.isAlive() && friendlyPlane.getPosition().equals(destPoint)) {
                    return false;
                }
            }
        }
        return true;
    }

    private int possibleHits(Plane plane) {
        if (!plane.canShoot() || !canShootSafely(plane)) {
            return 0;
        }
        int possibleHits = 0;
        Point3D[] range = plane.getShootRange();
        for (Plane enemyPlane : enemyPlanes) {
            for (Move move : getPossibleMoves(enemyPlane)) {
                Plane simPlane = enemyPlane.simulateMove(move);
                for (Point3D dest : range) {
                    if (dest.equals(simPlane.getPosition())) {
                        possibleHits++;
                    }
                }
            }           
        }
        return possibleHits;
    }

    private boolean isOutside(Plane plane) {
        return !plane.getPosition().isInArena(arenaSize);
    }
}

1
Jesteś obecnie drugim najlepszym miejscem, po PredictAndAvoid. Wygrywasz z każdym innym wejściem, ale dużo rysujesz. Przeciwko PredictAndAvoid, Whirligig udaje się wymusić więcej wygranych i losowań niż ty. Dobry wpis niezależnie od tego!
overactor

1
@overactor Dziękujemy za wkład! Oznacza to, że muszę pracować na strzelnicy ...
CommonGuy

1
Właśnie wykonałem więcej testów, wygląda na to, że przegrywasz mniej z Whirligigiem niż PredictAndAvoid, PredictAndAvoid jednak zarządza znacznie większą liczbą zwycięstw, oto dane z 2000 walk: PredictAndAvoid: 1560 Whirligig: 138 | PredictAndAvoid: 1564 Crossfire: 125 | Whirligig: 25 Crossfire: 600
overactor

@overactor Znalazłem czas na ulepszenie mojego przesyłania. Teraz czasami wygrywa, losuje i przegrywa z PredictAndAvoid.
CommonGuy,

1
Dobra robota, po 10 000 walk: WYNIK: Przewiduj i unikaj: 1240 Crossfire: 6567
overactor

20
/*
    PREDICT AND AVOID

    Rules of behavior:
    - Avoid hitting walls
    - Move, safely, to shoot at spaces our enemy might fly to
    - (contingent) Move to a safe space that aims closer to the enemy
    - Move to a safe space
    - Move, unsafely, to shoot at spaces our enemy might fly to
    - Move to any space (remember to avoid walls)

    Chooses randomly between equally prioritized moves

    contingent strategy is evaluated during early fights
*/

package Planes;

import java.util.Random;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Queue;


public class PredictAndAvoid extends PlaneControl {

    public PredictAndAvoid(int arenaSize, int rounds) {
        super(arenaSize, rounds);
    }


    private int fightsPerMatch = 0;
    private int fightNum = 0;
    private int roundNum = 0;
    private boolean useHoming = true;
    private int homingScore = 0;
    private int[][][] enemyHistory = new int[arenaSize][arenaSize][arenaSize];

    // don't need to take roots here, waste of cpu cycles
    int distanceCubed(Point3D a, Point3D b) {
        return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) + (a.z-b.z)*(a.z-b.z);
    }

    // is this plane guaranteed to hit a wall, now or soon?
    boolean dangerZone(Plane icarus) {
        // outside the arena?
        // already dead
        // this should never happen for my planes
        if (!icarus.getPosition().isInArena(arenaSize)) {
            return true;
        }
        // adjacent to a wall?
        // directly facing the wall?
        // death next turn
        if (
            icarus.getDirection().getMainDirections().length==1 &&
            icarus.getDistanceFromWall(icarus.getDirection().getMainDirections()[0]) == 0
        ) {
                return true;
        }
        // on an edge?
        // 2d diagonal facing into that edge?
        // death next turn
        if (
            icarus.getDirection().getMainDirections().length==2 &&
            icarus.getDistanceFromWall(icarus.getDirection().getMainDirections()[0]) == 0 &&
            icarus.getDistanceFromWall(icarus.getDirection().getMainDirections()[1]) == 0
        ) {
                return true;
        }
        // near a corner?
        // 3d diagonal facing into that corner?
        // death in 1-2 turns
        if (
            icarus.getDirection().getMainDirections().length==3 &&
            icarus.getDistanceFromWall(icarus.getDirection().getMainDirections()[0]) < 2 &&
            icarus.getDistanceFromWall(icarus.getDirection().getMainDirections()[1]) < 2 &&
            icarus.getDistanceFromWall(icarus.getDirection().getMainDirections()[2]) < 2
        ) {
                return true;
        }
        // there's at least one way out of this position
        return false;
    }

    @Override
    public Move[] act() {
        Move[] moves = new Move[2];

        for (int i=0; i<2; i++) {
            Plane p = myPlanes[i];
            if (!p.isAlive()) {
                moves[i] = new Move(new Direction("N"), false, false); // If we're dead we just return something, it doesn't matter anyway.
                continue;
            }

            // a list of every move that doesn't commit us to running into a wall
            // or a collision with the previously moved friendly plane
            ArrayList<Move> potentialMoves = new ArrayList<Move>();
            for (Direction candidateDirection : p.getPossibleDirections()) {
                if (i==1 && myPlanes[0].simulateMove(moves[0]).getPosition().equals(myPlanes[1].simulateMove(new Move(candidateDirection,false,false)).getPosition())) {

                } else {                
                    Plane future = new Plane(arenaSize, 0, p.getDirection(), p.getPosition().add(candidateDirection.getAsPoint3D())); 
                    if (!dangerZone(future)) {
                                potentialMoves.add(new Move(candidateDirection, false, false));
                    }
                    future = new Plane(arenaSize, 0, candidateDirection, p.getPosition().add(candidateDirection.getAsPoint3D())); 
                    if (!dangerZone(future)) {
                            potentialMoves.add(new Move(candidateDirection, true, false));
                    }
                }
            }

            // everywhere our enemies might end up
            // including both directions they could be facing for each location
            ArrayList<Plane> futureEnemies = new ArrayList<Plane>();
            for (Plane e : enemyPlanes) {
                if (e.isAlive()) {
                    for (Direction candidateDirection : e.getPossibleDirections()) {
                        futureEnemies.add(new Plane(
                            arenaSize, 
                            e.getCoolDown(), 
                            candidateDirection, 
                            e.getPosition().add(candidateDirection.getAsPoint3D())
                            ));
                        // don't make a duplicate entry for forward moves
                        if (!candidateDirection.getAsPoint3D().equals(e.getDirection().getAsPoint3D())) {
                            futureEnemies.add(new Plane(
                                arenaSize, 
                                e.getCoolDown(), 
                                e.getDirection(), 
                                e.getPosition().add(candidateDirection.getAsPoint3D())
                                ));
                        }
                    }
                }
            }

            // a list of moves that are out of enemies' potential line of fire
            // also skipping potential collisions unless we are ahead on planes
            ArrayList<Move> safeMoves = new ArrayList<Move>();
            for (Move candidateMove : potentialMoves) {
                boolean safe = true;
                Point3D future = p.simulateMove(candidateMove).getPosition();
                for (Plane ec : futureEnemies) {
                    if (ec.getPosition().equals(future)) {
                        if (
                            (myPlanes[0].isAlive()?1:0) + (myPlanes[1].isAlive()?1:0)
                            <= 
                            (enemyPlanes[0].isAlive()?1:0) + (enemyPlanes[1].isAlive()?1:0)
                        ) {
                            safe = false;
                            break;
                        }
                    }
                    if (ec.isAlive() && ec.canShoot()) {
                        Point3D[] range = ec.getShootRange();
                        for (Point3D t : range) {
                            if (future.equals(t)) {
                                safe = false;
                                break;
                            }
                        }
                        if (safe == false) {
                            break;
                        }
                    }
                }
                if (safe == true) {
                    safeMoves.add(candidateMove);
                }
            }

            // a list of moves that let us attack a space an enemy might be in
            // ignore enemies committed to suicide vs a wall
            // TODO: don't shoot at friendly planes
            ArrayList<Move> attackMoves = new ArrayList<Move>();
            for (Move candidateMove : potentialMoves) {
                int attackCount = 0;
                Plane future = p.simulateMove(candidateMove);
                Point3D[] range = future.getShootRange();
                for (Plane ec : futureEnemies) {
                    for (Point3D t : range) {
                        if (ec.getPosition().equals(t)) {
                            if (!dangerZone(ec)) {
                                    attackMoves.add(new Move(candidateMove.direction, candidateMove.changeDirection, true));
                                    attackCount++;
                            }
                        }
                    }
                }
                if (attackCount > 0) {

                }
            }

            // find all attack moves that are also safe moves
            ArrayList<Move> safeAttackMoves = new ArrayList<Move>();
            for (Move safeCandidate : safeMoves) {
                for (Move attackCandidate : attackMoves) {
                    if (safeCandidate.direction == attackCandidate.direction) {
                        safeAttackMoves.add(attackCandidate);
                    }
                }
            }

            // choose the safe move that aims closest potential enemy positions
            int maxDistanceCubed = arenaSize*arenaSize*arenaSize*8;
            Move homingMove = null;
            int bestHomingMoveTotalDistancesCubed = maxDistanceCubed*1000;
            for (Move candidateMove : safeMoves) {
                int totalCandidateDistancesCubed = 0;
                for (Plane ec : futureEnemies) {
                    if (ec.isAlive()) {
                        int distThisEnemyCubed = maxDistanceCubed;
                        Point3D[] range = p.simulateMove(candidateMove).getShootRange();
                        for (Point3D t : range) {
                            int d1 = distanceCubed(t, ec.getPosition());
                            if (d1 < distThisEnemyCubed) {
                                distThisEnemyCubed = d1;
                            }
                        }
                        totalCandidateDistancesCubed += distThisEnemyCubed;
                    }
                }
                if (totalCandidateDistancesCubed < bestHomingMoveTotalDistancesCubed) {
                    bestHomingMoveTotalDistancesCubed = totalCandidateDistancesCubed;
                    homingMove = candidateMove;
                }
            }

            Random rng = new Random();
            // move to attack safely if possible
            // even if we can't shoot, this is good for chasing enemies
            if (safeAttackMoves.size() > 0) {
                moves[i] = safeAttackMoves.get(rng.nextInt(safeAttackMoves.size()));
                }
            // turn towards enemies if it's possible and safe
            // tests indicate value of this strategy varies significantly by opponent
            // useHoming changes based on outcome of early fights with[out] it
            // TODO: track enemy movement, aim for neighborhood
            else if (useHoming == true && homingMove != null) {
                moves[i] = homingMove;
                }
            // make random move, safe from attack
            else if (safeMoves.size() > 0) {
                moves[i] = safeMoves.get(rng.nextInt(safeMoves.size()));
                }
            // move to attack unsafely only if there are no safe moves
            else if (attackMoves.size() > 0 && p.canShoot()) {
                moves[i] = attackMoves.get(rng.nextInt(attackMoves.size()));
                }
            // make random move, safe from walls
            else if (potentialMoves.size() > 0) {
                moves[i] = potentialMoves.get(rng.nextInt(potentialMoves.size()));
                }
            // keep moving forward
            // this should never happen
            else {
                moves[i] = new Move(p.getDirection(), false, true);
                }
        }
        roundNum++;
        return moves;
    }

    @Override
    public void newFight(int fightsFought, int myScore, int enemyScore) {
        // try the homing strategy for 1/8 of the match
        // skip it for 1/8, then choose the winning option
        if (fightsFought == fightsPerMatch/8) {
            homingScore = myScore-enemyScore;
            useHoming = false;
        } else if (fightsFought == (fightsPerMatch/8)*2) {
            if (homingScore*2 > myScore-enemyScore) {
                useHoming = true;
            }
        }
        fightNum = fightsFought;
        roundNum = 0;
    }

    @Override
    public void newOpponent(int fights) {
        fightsPerMatch = fights;
    }
}

1
obecnie prawie za każdym razem pokonuje Whirligiga. Musisz wyśledzić błąd w kodzie unikania strzałów przeciwnika.
Sparr

1
naprawiono błąd. 0 strat dla obecnych przeciwników.
Sparr

2
pracowałem nad malejącymi losowaniami, znaczny postęp. potrzebuję mądrzejszych samolotów wroga, zanim będę mógł zrobić znacznie większy postęp.
Sparr

1
Priorytetem byłoby przeniesienie mnie do bezpiecznego miejsca, ponad nieoczekiwanym strzelaniem
Cruncher

1
@Cruncher już to robi w mojej lokalnej kopii i poprawia wydajność o kilka% w stosunku do obecnych przeciwników. Teraz też unikam kolizji, kiedy nie wyprzedzam samolotów. aktualizacja już wkrótce!
Sparr

18

Dogfight 3D Visualizer

Dla tego wyzwania napisałem mały, szybki wizualizator. Pliki kodu i jar znajdują się na moim repozytorium github: https://github.com/Hungary-Dude/DogfightVisualizer
Wykonane przy użyciu libGDX ( http://libgdx.com ). W tej chwili interfejs użytkownika jest całkiem zły, poskładałem to trochę szybko.

Uczę się, jak korzystać z Git i Gradle, więc proszę o komentarz, jeśli zrobiłem coś złego

Uruchom dist/dogfight.batlub dist/dogfight.shzobacz DumbPlanes w akcji!

Aby zbudować ze źródła, będziesz potrzebował Gradle ( http://gradle.org ) i integracji Gradle dla twojego IDE, jeśli go masz. Następnie sklonuj repozytorium i uruchom gradlew desktop:run. Mam nadzieję, że Gradle zaimportuje wszystkie wymagane biblioteki. Główną klasą jest zove.koth.dogfight.desktop.DesktopLauncher.

Uruchamianie bez importowania

Skopiuj wszystkie pliki klas samolotów do dist/. Następnie uruchom dist/desktop-1.0.jarpolecenie:

java -cp your-class-folder/;desktop-1.0.jar;Planes.jar zove.koth.dogfight.desktop.DesktopLauncher package.YourPlaneController1 package.YourPlaneController2 ...

Będę aktualizować, gdy źródło kontrolera Planes zostanie zaktualizowane, ale aby zaktualizować siebie, musisz dodać trochę kodu do Planes.Controller. Informacje na ten temat można znaleźć w pliku Readme github.

Oto zrzut ekranu: Zrzut ekranu

Jeśli masz jakieś pytania lub sugestie, zostaw komentarz poniżej!


To niesamowite, mam gotowy projekt, w którym dodałem klasy samolotów. Jak teraz uruchomić wizualizator na tych samolotach? Może lepiej to jednak wyjaśnić na czacie . Jako sugestię byłoby wspaniale, gdybyś mógł wkleić minimalną kłodę zapałki, a następnie przejść przez tę zapałkę, a także, myślę, że mógłbyś sfałszować współrzędne, samoloty powinny zacząć odpowiednio od podłogi i sufitu. Niesamowita praca !!
overactor

Wziąłem Point3Ds reprezentujące pozycję samolotu i odejmowałem 6,5 od każdej współrzędnej, aby przenieść je do widoku. Coś w rodzaju plane.transform.setToTranslation(new Vector3(point3d.x-6.5f,point3d.y-6.5f,point3d.z-6.5f))Żaden samolot nie wydaje się wykraczać poza granice, więc wątpię, żeby coś było nie tak
DankMemes

Ach, czekaj, czy używasz osi y jako wysokości? (jak w większości gier, jak sądzę) W moim systemie z reprezentuje wysokość, ale nie ma to większego znaczenia, ponieważ jest symetryczny
overactor

Ohhhhhhh rozumiem. Przepraszam, ale tak naprawdę nie patrzyłem na twój kod. Właśnie przetłumaczyłem Point3Ds bezpośrednio na libgdx Vector3s. Nawiasem mówiąc, nie będzie mnie przez tydzień od jutra. Przepraszam, jeśli mnie tu nie ma, jeśli czegoś potrzebujesz. Spróbuję odprawić się z dala.
DankMemes,

12

EmoFockeWulf

Wrócił. Głodował do 224 bajtów. Nie wie, jak tak się skończył.

package Planes;public class EmoFockeWulf extends PlaneControl{public EmoFockeWulf(int s, int r){super(s,r);}public Move[] act(){Move[] m=new Move[2];m[0]=new Move(myPlanes[0].getDirection(),false,false);m[1]=m[0];return m;}}

13
To poważnie wymyka się spod kontroli. Co powiesz na to, żebyśmy skazali go na zawsze na standardowe luki?
user80551

13
@ user80551 Myślę, że to ważny styl gry, niezależnie od tego. Nie ma powodu, aby go wyrzucić.
Seiyria

3
Jest o 47 bajtów grubszy niż był!
johnchen902

2
Mógł popełnić samobójstwo szybciej niż to. Niezbyt skutecznie emo.
Sparr

2
@Sparr tak, ale wtedy miałaby większą liczbę bajtów i straciłaby ironię nie zawsze przegraną. : P
cjfaure

10

Weeeeeeeeeeee - 344 bajty po usunięciu białych znaków

Czy niesamowite pętle i rzeczy. Nie możesz przegrać, jeśli robisz pętle.

package Planes;
public class W extends PlaneControl{
    int i,c;
    int[] s={1,1,1,0,-1,-1,-1,0};
    public W(int a,int r){
        super(a,r);
    }
    public void newFight(int a,int b,int c){
        i=4;
    }
    public Move[] act(){
        Plane p=myPlanes[0];
        if(++i<6)
            c=p.getX()==0?1:-1;
        Move n=new Move(i<8?p.getDirection():new Direction(c*s[(i+2)%8],0,c*s[i%8]),0<1,i%2<1);
        Move[] m={n,n};
        return m;
    }
}

EDYCJA: najwidoczniej kiedy mój samolot wystartował jako drużyna 2, natychmiast rozbili się o ścianę. Myślę, że teraz to naprawiłem. Ufnie.


Twoje oświadczenie zwrotne jest niezgodne z prawem. W Javie, aby utworzyć tablice obiektów określające całą zawartość w jednym wierszu, musisz użyć, new Type[]{item1, item2, ...}więc w tym przypadku miałbyśreturn new Move[]{new Move(d,z,a),new Move(d,z,a^=z)};
DankMemes

Spróbuj także browxy.com, jeśli nie masz pobranego IDE. (To wcale nie jest potężne, ale działa)
DankMemes

dzięki, zapomniałem czy to zadziałało czy nie. po prostu nie chciałem pobierać jego klas, aby cały pakiet i dziedziczenie działały.
pseudonim

Po uruchomieniu samolotów z nowym kodem zwraca tylko S i SU i umiera za każdym razem w 15. rundzie. Masz pomysł, dlaczego?
overactor

hmm ... nie. najwyraźniej zepsułem się z moją zmianą. naprawdę miałem nadzieję, że to zadziała ... po prostu cofnę edycję.
pseudonim

6

Samolot Move-and-Shoot

Unika ścian, znajdując się blisko ściany i obracając, strzela, gdy tylko jest to możliwe.

    package Planes;

public class MoveAndShootPlane extends PlaneControl {

    public MoveAndShootPlane(int arenaSize, int rounds) {
        super(arenaSize, rounds);
    }

    @Override
    public Move[] act() {
        Move[] moves = new Move[2];

        for (int i=0; i<2; i++) {
            if (!myPlanes[i].isAlive()) {
                moves[i] = new Move(new Direction("N"), false, false); // If we're dead we just return something, it doesn't matter anyway.
                continue;
            }
            // What direction am I going again?
            Direction currentDirection = myPlanes[i].getDirection();

            // Is my plane able to shoot?
            boolean canIShoot = myPlanes[i].canShoot();

            // if a wall is near me, turn around, otherwise continue along
            if (myPlanes[i].getDirection().getAsString().equals("N") && myPlanes[i].getDistanceFromWall('N') <= 2) {
                if (myPlanes[i].getDistanceFromWall('U') > myPlanes[i].getDistanceFromWall('D')) {
                    moves[i] = new Move(new Direction("NU"), true, canIShoot);
                } else {
                    moves[i] = new Move(new Direction("ND"), true, canIShoot);
                } 
            } else if (myPlanes[i].getDirection().getAsString().equals("S") && myPlanes[i].getDistanceFromWall('S') <= 2) {
                if (myPlanes[i].getDistanceFromWall('U') > myPlanes[i].getDistanceFromWall('D')) {
                    moves[i] = new Move(new Direction("SU"), true, canIShoot);
                } else {
                    moves[i] = new Move(new Direction("SD"), true, canIShoot);
                } 
            } else {
                if (myPlanes[i].getDirection().getAsString().equals("N") || myPlanes[i].getDirection().getAsString().equals("S")) {             
                    moves[i] = new Move(currentDirection, false, canIShoot);
                } else if (myPlanes[i].getDistanceFromWall('N') < myPlanes[i].getDistanceFromWall('S')) {
                    if (myPlanes[i].getDirection().getAsString().equals("NU")) {
                        moves[i] = new Move(new Direction("U"), true, canIShoot);
                    } else if (myPlanes[i].getDirection().getAsString().equals("U")) {
                        moves[i] = new Move(new Direction("SU"), true, canIShoot);
                    } else if (myPlanes[i].getDirection().getAsString().equals("SU")) {
                        moves[i] = new Move(new Direction("S"), true, canIShoot);
                    } else if (myPlanes[i].getDirection().getAsString().equals("ND")) {
                        moves[i] = new Move(new Direction("D"), true, canIShoot);
                    } else if (myPlanes[i].getDirection().getAsString().equals("D")) {
                        moves[i] = new Move(new Direction("SD"), true, canIShoot);
                    } else if (myPlanes[i].getDirection().getAsString().equals("SD")) {
                        moves[i] = new Move(new Direction("S"), true, canIShoot);
                    }
                } else {
                    if (myPlanes[i].getDirection().getAsString().equals("SU")) {
                        moves[i] = new Move(new Direction("U"), true, canIShoot);
                    } else if (myPlanes[i].getDirection().getAsString().equals("U")) {
                        moves[i] = new Move(new Direction("NU"), true, canIShoot);
                    } else if (myPlanes[i].getDirection().getAsString().equals("NU")) {
                        moves[i] = new Move(new Direction("N"), true, canIShoot);
                    } else if (myPlanes[i].getDirection().getAsString().equals("SD")) {
                        moves[i] = new Move(new Direction("D"), true, canIShoot);
                    } else if (myPlanes[i].getDirection().getAsString().equals("D")) {
                        moves[i] = new Move(new Direction("ND"), true, canIShoot);
                    } else if (myPlanes[i].getDirection().getAsString().equals("ND")) {
                        moves[i] = new Move(new Direction("N"), true, canIShoot);
                    }
                }
            }
        }
        return moves;
    }

    @Override
    public void newFight(int fightsFought, int myScore, int enemyScore) {
        // Using information is for schmucks.
    }

    @Override
    public void newOpponent(int fights) {
        // What did I just say about information?
    }
}     

Oświadczenie: W ogóle nie jestem programistą Java, więc jeśli coś spieprzyłem, napraw to dla mnie!


Jeszcze go nie testowałem, ale to nie zadziała, próbujesz obrócić o 180 stopni na raz. Jako wskazówkę wypróbuj N-> NU-> U-> SU-> S zamiast N-> S lub zastąp U przez D, jeśli dach jest bliżej niż podłoga.
overactor

@overactor: Trochę mi brakowało you may only change your angle by 45 degrees.
Kyle Kanos

Nie ma problemu, nie powinno być zbyt trudne do naprawienia.
overactor

Prawdopodobnie powinieneś użyć HashMap <String> zamiast Hashtable. W przeciwnym razie new Direction(wayToGo.get(currentDirection))nie będzie działać, ponieważ zapomnisz rzucić na String. wayToGo.put po tym, jak pole również nie jest poprawne, umieść je w bloku {wayToGo.put (bla); blaha;} lub w konstruktorze.
Luna

7
Na razie wygrywa wszystko dzięki temu, że nie wlatuje w ściany.
overactor

6

Bąk

Oba samoloty kierują się w stronę środka (ish), a następnie strzelają tak często, jak to możliwe. Jedna walka jest wybierana podczas jednej walki, a para zawsze obraca się wokół tej samej osi w przeciwnych kierunkach.

package Planes;

public class Whirligig extends PlaneControl{

    public Whirligig(int arenaSize, int rounds) {
        super(arenaSize, rounds);
        cycle = -1;
    }

    int cycle;
    String[][] cycles = {
            {"E","EU","U","WU","W","WD","D","ED"},
            {"N","NU","U","SU","S","SD","D","ND"},
            {"S","SW","W","NW","N","NE","E","SE"},
            {"ED","D","WD","W","WU","U","EU","E"},
            {"ND","D","SD","S","SU","U","NU","N"},
            {"SE","E","NE","N","NW","W","SW","S"},
    };

    private Move act(int idx){
        Plane plane = myPlanes[idx];
        Move move = new Move(plane.getDirection(), true, plane.canShoot());
        if(!plane.isAlive())
            return new Move(new Direction("N"), false, false);

        if(cycle < 0){
            if(idx == 0 && (myPlanes[1].getZ() == 0 || myPlanes[1].getZ() == 13)){
                return move;
            }
            if(distanceToCenter(plane.getPosition()) > 2){
                move.direction = initialMove(plane);
            } else {
                cycle = (int)(Math.random()*3);
            }
        } else {
            move.direction = continueCycle(plane, cycle + (idx*3));
        }
        return move;
    }

    private Direction initialMove(Plane plane){
        if(plane.getDirection().getNSDir() > 0)
            return new Direction("SU");
        else
            return new Direction("ND");
    }

    private Direction continueCycle(Plane plane, int pathIndex){
        Direction current = plane.getDirection();
        String[] path = cycles[pathIndex];
        for(int i=0;i<path.length;i++)
            if(path[i].equals(current.getAsString()))
                return new Direction(path[(i+1)%path.length]);

        Direction[] possible = plane.getPossibleDirections();
        int step = (int)(Math.random()*path.length);
        for(int i=0;i<path.length;i++){
            for(int j=0;j<possible.length;j++){
                if(path[(i+step)%path.length].equals(possible[j].getAsString()))
                    return new Direction(path[(i+step)%path.length]);
            }
        }       
        return plane.getDirection();
    }

    private int distanceToCenter(Point3D pos){
        int x = (int)Math.abs(pos.x - 6.5); 
        int y = (int)Math.abs(pos.y - 6.5); 
        int z = (int)Math.abs(pos.z - 6.5);
        return Math.max(x, Math.max(y,z));
    }

    @Override
    public Move[] act() {
        Move[] moves = new Move[2];
        for(int i=0;i<2;i++){
            moves[i] = act(i);
        }
        return moves;
    }

    @Override
    public void newFight(int fought, int wins, int losses){
        cycle = -1;
    }

    @Override
    public void newOpponent(int fights){
        cycle = -1;
    }

}

4

DumbPlanes

DumbPlanes tak bardzo starają się nie latać w ściany, ale nie są zbyt mądre i zwykle w końcu uderzają w ściany. Od czasu do czasu strzelają również, jeśli tylko wiedzą, do czego strzelają.

package Planes;

public class DumbPlanes extends PlaneControl {

    public DumbPlanes(int arenaSize, int rounds) {
        super(arenaSize, rounds);
    }

    @Override
    public Move[] act() {
        Move[] moves = new Move[2];
        for (int i=0; i<2; i++) {
            if (!myPlanes[i].isAlive()) {
                moves[i] = new Move(new Direction("N"), false, false); // If we're dead we just return something, it doesn't matter anyway.
                continue;
            }
            Direction[] possibleDirections = myPlanes[i].getPossibleDirections(); // Let's see where we can go.

            for (int j=0; j<possibleDirections.length*3; j++) {

                int random = (int) Math.floor((Math.random()*possibleDirections.length)); // We don't want to be predictable, so we pick a random direction out of the possible ones.

                if (myPlanes[i].getPosition().add(possibleDirections[random].getAsPoint3D()).isInArena(arenaSize)) { // We'll try not to fly directly into a wall.
                    moves[i] = new Move(possibleDirections[random], Math.random()>0.5, myPlanes[i].canShoot() && Math.random()>0.2);
                    continue; // I'm happy with this move for this plane.
                }

                // Uh oh.
                random = (int) Math.floor((Math.random()*possibleDirections.length));
                moves[i] = new Move(possibleDirections[random], Math.random()>0.5, myPlanes[i].canShoot() && Math.random()>0.2);
            }
        }

        return moves;
    }

    @Override
    public void newFight(int fightsFought, int myScore, int enemyScore) {
        // Using information is for schmucks.
    }

    @Override
    public void newOpponent(int fights) {
        // What did I just say about information?
    }
}

4

Starfox (WIP - jeszcze nie działa):

W rzeczywistości nie wykorzystuje wszystkich dostępnych ruchów. Ale on próbuje zestrzelić wrogów i nie uderzyć w ściany.

package Planes;

import java.util.ArrayList;
import java.util.function.Predicate;

public class Starfox extends PlaneControl
{

    public Starfox(int arenaSize, int rounds)
    {
        super(arenaSize, rounds);
    }

    private ArrayList<Point3D> dangerousPositions;
    private ArrayList<Point3D> riskyPositions;

    @Override
    public Move[] act()
    {
        dangerousPositions = new ArrayList<>();
        riskyPositions = new ArrayList<>();

        // add corners as places to be avoided
        dangerousPositions.add(new Point3D(0,0,0));
        dangerousPositions.add(new Point3D(0,0,arenaSize-1));
        dangerousPositions.add(new Point3D(0,arenaSize-1,0));
        dangerousPositions.add(new Point3D(0,arenaSize-1,arenaSize-1));
        dangerousPositions.add(new Point3D(arenaSize-1,0,0));
        dangerousPositions.add(new Point3D(arenaSize-1,0,arenaSize-1));
        dangerousPositions.add(new Point3D(arenaSize-1,arenaSize-1,0));
        dangerousPositions.add(new Point3D(arenaSize-1,arenaSize-1,arenaSize-1));


        for (Plane p : super.enemyPlanes)
        {
            for (Direction d : p.getPossibleDirections())
            {
                Point3D potentialPosition = new Point3D(p.getX(), p.getY(), p.getZ()).add(d.getAsPoint3D());
                if (potentialPosition.isInArena(arenaSize))
                {
                    riskyPositions.add(potentialPosition);
                    if (p.canShoot())
                    {
                        for (Point3D range : p.getShootRange())
                        {
                            riskyPositions.add(range.add(potentialPosition));
                        }
                    }
                }
            }
        }

        ArrayList<Move> moves = new ArrayList<>();

        for (Plane p : myPlanes)
        {
            if (p.isAlive())
            {
                ArrayList<Direction> potentialDirections = new ArrayList<>();

                for (Direction d : p.getPossibleDirections())
                {
                    Point3D potentialPosition = new Point3D(p.getX(), p.getY(), p.getZ()).add(d.getAsPoint3D());
                    if (potentialPosition.isInArena(arenaSize))
                    {
                        potentialDirections.add(d);
                    }
                }

                // remove dangerous positions from flight plan
                potentialDirections.removeIf(new Predicate<Direction>()
                {
                    @Override
                    public boolean test(Direction test)
                    {
                        boolean result = false;
                        for (Point3D compare : dangerousPositions)
                        {
                            if (p.getPosition().add(test.getAsPoint3D()).equals(compare))
                            {
                                result = true;
                            }
                        }
                        return result && potentialDirections.size() > 0;
                    }
                });

                // remove positions with no future from flight plan

                potentialDirections.removeIf(new Predicate<Direction>()
                {
                    @Override
                    public boolean test(Direction test)
                    {
                        boolean hasFuture = false;
                        for (Direction compare : p.getPossibleDirections())
                        {
                            Plane future = new Plane(arenaSize, 0, compare, p.getPosition().add(compare.getAsPoint3D()));
                            if (future!=null && future.getDirection()!=null) {
                                for (Direction d : future.getPossibleDirections())
                                {
                                    if (future.getPosition().add(d.getAsPoint3D()).isInArena(arenaSize))
                                    {
                                        hasFuture = true;
                                        break;
                                    }
                                }
                            }
                        }
                        return !hasFuture;
                    }
                });

                // remove risky positions from flight plan
                potentialDirections.removeIf(new Predicate<Direction>()
                {
                    @Override
                    public boolean test(Direction test)
                    {
                        boolean result = false;
                        for (Point3D compare : riskyPositions)
                        {
                            if (p.getPosition().add(test.getAsPoint3D()).equals(compare))
                            {
                                result = true;
                            }
                        }
                        return result && potentialDirections.size() > 0;
                    }
                });

                // check for targets
                Direction best = null;
                if (p.canShoot())
                {
                    int potentialHits = 0;
                    for (Direction d : potentialDirections)
                    {
                        Plane future = new Plane(arenaSize, 0, d, p.getPosition().add(d.getAsPoint3D()));
                        for (Point3D t : future.getShootRange())
                        {
                            int targets = 0;
                            for (Plane e : super.enemyPlanes)
                            {
                                for (Direction s : e.getPossibleDirections())
                                {
                                    Plane target = new Plane(arenaSize, 0, s, e.getPosition().add(s.getAsPoint3D()));
                                    if (target.getPosition().equals(t))
                                    {
                                        targets++;
                                    }

                                }
                            }
                            if (targets > potentialHits)
                            {
                                best = d;
                                potentialHits = targets;
                            }
                        }
                    }
                }

                if (best == null)
                {
                    if (potentialDirections.size() > 0) {
                        best = potentialDirections.get((int) Math.floor(Math.random() * potentialDirections.size()));
                    } else {
                        best = new Direction("N");
                    }
                }

                moves.add(new Move(best, true, false));
                dangerousPositions.add(p.getPosition().add(best.getAsPoint3D()));

            }
            else
            {
                // this plane is dead, not much to do but go hide in corner
                moves.add(new Move(new Direction("N"), false, false));

            }
        }

        Move[] movesArr = {moves.get(0), moves.get(1)};
        return movesArr;
    }

    @Override
    public void newFight(int fightsFought, int myScore, int enemyScore)
    {
        // Using information is for schmucks.
    }

    @Override
    public void newOpponent(int fights)
    {
        // What did I just say about information?
    }
}

7
Ale czy może zrobić beczkę?
Erty Seidohl

1
Dostaję wyjątek, oto ślad stosu: wyjątek w wątku „main” java.lang.NullPointerException w Planes.Starfox $ 2.test (Starfox.java:99) w Planes.Starfox $ 2.test (Starfox.java:1 ) w java.util.ArrayList.removeIf (nieznane źródło) w Planes.Starfox.act (Starfox.java:90) w Planes.Controller.fight (Controller.java:141) w Planes.Controller.matchUp (Controller.java: 85) w Planes.Controller.main (Controller.java:35) Musiałem dodać pakiety samolotów, inaczej nie skompiluje się, może to ma coś wspólnego z tym.
overactor

Mam go uruchomionego, ale nie działa tak dobrze, jak się spodziewałem, myślę, że problemem może być to, że najlepiej jest zbyt często zerowy.
overactor

Wygląda na to, że Starfox porusza się w kierunku ognia wroga, a nie z niego, można zobaczyć, co się tutaj
overactor

3

Niebezpieczeństwo

  • Napisane w Pythonie i interfejsach z opakowaniem kodu innym niż Java napisanym przez Sparr.

  • Robi całą swoją matematykę w czystym języku Python i jest całkowicie niezoptymalizowany. Trochę wolno.

  • Wysoce konfigurowalny i rozszerzalny.

  • Bardzo dobrze radzi sobie z wcześniejszymi zgłoszeniami. Wygrywa walki 2: 1 za każdą przegraną z Crossfirelub PredictAndAvoid, i wygrywa 98 +% wszystkich walk z innymi rywalami.

Zawiera własne opcjonalne narzędzie do wizualizacji:

Walka Crossfire/ PredictAndAvoid, z tytułowymi ocenami stref zagrożenia przedstawionymi w otaczającym tomie:

Film przedstawiający cztery samoloty walczące w dwóch rundach z kolorową siatką wokseli przemieniającą się wokół nich.

  • Wizualizowane za pomocą nipy_spectralmapy kolorów z matplotlib. Bardziej niebezpieczne współrzędne są renderowane przy użyciu kolorów bliższych czerwieni / bieli w spektrum elektromagnetycznym i są rysowane większymi kropkami.

  • Niebezpieczeństwo: niebieski <zielony <żółty <czerwony <jasnoszary

Wydajność:

1000 rund z ośmioma innymi algorytmami na tablicy wyników:

SCORE: DumbPlanes: 0 Dangerzoner: 1000
SCORE: Crossfire: 132 Dangerzoner: 367
SCORE: PredictAndAvoid: 165 Dangerzoner: 465
SCORE: Wee: 0 Dangerzoner: 1000
SCORE: Whirligig: 0 Dangerzoner: 989
SCORE: MoveAndShootPlane: 0 Dangerzoner: 1000
SCORE: Starfox: 4 Dangerzoner: 984
SCORE: DumbPy: 0 Dangerzoner: 1000
SCORES:

DumbPlanes: 2 points.
Crossfire: 12 points.
PredictAndAvoid: 14 points.
Wee: 10 points.
Whirligig: 8 points.
MoveAndShootPlane: 6 points.
Starfox: 4 points.
DumbPy: 0 points.
Dangerzoner: 16 points.


THE OVERALL WINNER(S): Dangerzoner
With 16 points.

Kod:

#!/usr/bin/env python3
"""
DangerZoner

Each turn:
    1) Make a list of all possible locations to move to, explicitly excluding suicidal positions that will collide with the walls, an ally, or an ally's bullet.
    2) Rate each possible location using heuristics that estimate the approximate danger in that zone, accounting for the following factors:
        -Proximity to walls. (Manoeuvring constrictions and risk of collision.)
        -Proximity to fronts of planes. (Risk of mid-air collisions.)
        -High distance from enemy planes. (Risk of enemies easily turning to shoot.)
        -Intersection with all enemy attack vectors. (Explicit safety on the next round.)
        -Proximity to enemy forward vectors. (Approximate probability of being targeted in upcoming rounds.)
    3) If certain respective thresholds are met in the possible moves' danger ratings, then do the following if possible:
        -Take a potshot at a random position that an enemy might move to next turn (but never shoot an ally).
        -Take a potshot at an extrapolated position that an enemy will likely move to next turn if they keep up their current rate of turn (but never shoot an ally).
        -Turn to pursue the closest enemy.
        -Move randomly to confound enemy predictive mechanisms. (Disabled since implementing explicit enemy attack vectors in danger zone calculation.)
    4) If none of those thresholds are met, then choose the move rated as least dangerous.
"""

import math, random, functools, sys

#import NGrids
NGrids = lambda: None
class NSpace(object):
    """Object for representing an n-dimensional space parameterized by a list of extents in each dimension."""
    def __init__(self, dimensions):
        self.dimensions = tuple(dimensions)
    def check_coordshape(self, coord):
        return len(coord) == len(self.dimensions)
    def enforce_coordshape(self, coord):
        if not self.check_coordshape(coord):
            raise ValueError(f"Attempted to access {len(coord)}-coordinate point from {len(self.dimensions)}-coordinate space: {coord}")
    def check_coordrange(self, coord):
        return all((0 <= c <= b) for c, b in zip(coord, self.dimensions))
    def enforce_coordrange(self, coord):
        if not self.check_coordrange(coord):
            raise ValueError(f"Attempted to access coordinate point out of range of {'x'.join(str(d) for d in self.dimensions)} space: {coord}")
    def check_coordtype(self, coord):
        return True
    def enforce_coordtype(self, coord):
        if not self.check_coordtype(coord):
            raise TypeError(f"Attempted to access grid point with invalid coordinates for {type(self).__name__}(): {coord}")
    def enforce_coord(self, coord):
        for f in (self.enforce_coordshape, self.enforce_coordrange, self.enforce_coordtype):
            f(coord)
    def coords_grid(self, step=None):
        if step is None:
            step = tuple(1 for i in self.dimensions)
        self.enforce_coord(step)
        counts = [math.ceil(d/s) for d, s in zip(self.dimensions, step)]
        intervals = [1]
        for c in counts:
            intervals.append(intervals[-1]*c)
        for i in range(intervals[-1]):
            yield tuple((i//l)*s % (c*s) for s, l, c in zip(step, intervals, counts))
NGrids.NSpace = NSpace

def Pythagorean(*coords):
    return math.sqrt(sum(c**2 for c in coords))

class Plane(object):
    """Object for representing a single dogfighting plane."""
    def __init__(self, alive, coord, vec, cooldown=None, name=None):
        self.alive = alive
        self.set_alive(alive)
        self.coord = coord
        self.set_coord(coord)
        self.vec = vec
        self.set_vec(vec)
        self.cooldown = cooldown
        self.set_cooldown(cooldown)
        self.name = name
    def set_alive(self, alive):
        self.lastalive = self.alive
        self.alive = alive
    def set_coord(self, coord):
        self.lastcoord = self.coord
        self.coord = coord
    def set_vec(self, vec):
        self.lastvec = self.vec
        self.vec = vec
    def set_cooldown(self, cooldown):
        self.lastcooldown = self.cooldown
        self.cooldown = cooldown
    def update(self, alive=None, coord=None, vec=None, cooldown=None):
        if alive is not None:
            self.set_alive(alive)
        if coord is not None:
            self.set_coord(coord)
        if vec is not None:
            self.set_vec(vec)
        if cooldown is not None:
            self.set_cooldown(cooldown)
    def get_legalvecs(self):
        return getNeighbouringVecs(self.vec)
    def get_legalcoords(self):
        return {tuple(self.coord[i]+v for i, v in enumerate(vec)) for vec in self.get_legalvecs()}
    def get_legalfutures(self):
        return (lambda r: r.union((c, self.vec) for c, v in r))({(vecAdd(self.coord, vec),vec) for vec in self.get_legalvecs()})

class DangerZones(NGrids.NSpace):
    """Arena object for representing an n-dimensional volume with both enemy and allied planes in it and estimating the approximate safety/danger of positions within it. """
    def __init__(self, dimensions=(13,13,13), walldanger=18.0, walldistance=3.5, wallexpo=2.0, walluniformity=5.0, planedanger=8.5, planeexpo=8.0, planeoffset=1.5, planedistance=15.0, planedistancedanger=2.0, planedistanceexpo=1.5, firedanger=9.0, collisiondanger=10.0, collisiondirectionality=0.6, collisiondistance=2.5, collisionexpo=0.2):
        NGrids.NSpace.__init__(self, dimensions)
        self.walldanger = walldanger
        self.walldistance = walldistance
        self.wallexpo = wallexpo
        self.walluniformity = walluniformity
        self.planedanger = planedanger
        self.planeexpo = planeexpo
        self.planeoffset = planeoffset
        self.planedistance = planedistance
        self.planedistancedanger = planedistancedanger
        self.planedistanceexpo = planedistanceexpo
        self.firedanger = firedanger
        self.collisiondanger = collisiondanger
        self.collisiondirectionality = collisiondirectionality
        self.collisiondistance = collisiondistance
        self.collisionexpo = collisionexpo
        self.set_planes()
        self.set_allies()
        self.clear_expectedallies()
    def filteractiveplanes(self, planes=None):
        if planes is None:
            planes = self.planes
        return (p for p in planes if all((p.alive, p.coord, p.vec)))
    def rate_walldanger(self, coord):
        self.enforce_coordshape(coord)
        return (lambda d: (max(d)*self.walluniformity+sum(d))/(self.walluniformity+1))((1-min(1, (self.dimensions[i]/2-abs(v-self.dimensions[i]/2))/self.walldistance)) ** self.wallexpo * self.walldanger for i, v in enumerate(coord))
    def rate_planedanger(self, coord, planecoord, planevec):
        for v in (planecoord, planevec, coord):
            self.enforce_coordshape(v)
        return max(0, (1 - vecAngle(planevec, vecSub(coord, vecSub(planecoord, vecMult(planevec, (self.planeoffset,)*len(self.dimensions)))) ) / math.pi)) ** self.planeexpo * self.planedanger
        offsetvec = convertVecTrinary(planevec, length=self.planeoffset)
        relcoord = [v-(planecoord[i]-offsetvec[i]) for i, v in enumerate(coord)]
        nrelcoord = (lambda m: [(v/m if m else 0) for v in relcoord])(Pythagorean(*relcoord))
        planevec = (lambda m: [(v/m if m else 0) for v in planevec])(Pythagorean(*planevec))
        return max(0, sum(d*p for d, p in zip(planevec, nrelcoord))+2)/2 ** self.planeexpo * self.planedanger + min(1, Pythagorean(*relcoord)/self.planedistance) ** self.planedistanceexpo * self.planedistancedanger
    def rate_planedistancedanger(self, coord, planecoord, planevec):
        return Pythagorean(*vecSub(planecoord, coord))/self.planedistance ** self.planedistanceexpo * self.planedistancedanger
    def rate_firedanger(self, coord, plane):
        return (min(vecAngle(vecSub(coord, c), v) for c, v in plane.get_legalfutures()) < 0.05) * self.firedanger
    def rate_collisiondanger(self, coord, planecoord, planevec):
        if coord == planecoord:
            return self.collisiondanger
        offsetvec = tuple(p-c for p,c in zip(planecoord, coord))
        return max(0, vecAngle(planevec, offsetvec)/math.pi)**self.collisiondirectionality * max(0, 1-Pythagorean(*offsetvec)/self.collisiondistance)**self.collisionexpo*self.collisiondanger
    def set_planes(self, *planes):
        self.planes = planes
    def set_allies(self, *allies):
        self.allies = allies
    def rate_planesdanger(self, coord, planes=None):
        if planes is None:
            planes = {*self.planes}
        return max((0, *(self.rate_planedanger(coord, planecoord=p.coord, planevec=p.vec) for p in self.filteractiveplanes(planes))))
    def rate_planedistancesdanger(self, coord, planes=None):
        if planes is None:
            planes = {*self.planes}
        return max((0, *(self.rate_planedistancedanger(coord, planecoord=p.coord, planevec=p.vec) for p in self.filteractiveplanes(planes))))
    def rate_firesdanger(self, coord, planes=None):
        if planes is None:
            planes = {*self.planes}
        return sum(self.rate_firedanger(coord, p) for p in self.filteractiveplanes(planes))
    def rate_collisionsdanger(self, coord, pself=None, planes=None):
        if planes is None:
            planes = {*self.planes, *self.allies}
        return max((0, *(self.rate_collisiondanger(coord , planecoord=p.coord, planevec=p.vec) for p in self.filteractiveplanes(planes) if p is not pself)))
    def rate_sumdanger(self, coord, pself=None, planes=None):
        return max((self.rate_walldanger(coord), self.rate_planesdanger(coord, planes=planes), self.rate_planedistancesdanger(coord, planes=planes), self.rate_firesdanger(coord, planes=planes), self.rate_collisionsdanger(coord, pself=pself, planes=planes)))
    def get_expectedallies(self):
        return {*self.expectedallies}
    def clear_expectedallies(self):
        self.expectedallies = set()
    def add_expectedallies(self, *coords):
        self.expectedallies.update(coords)
    def get_expectedshots(self):
        return {*self.expectedshots}
    def clear_expectedshots(self):
        self.expectedshots = set()
    def add_expectedshots(self, *rays):
        self.expectedshots.update(rays)
    def tickturn(self):
        self.clear_expectedallies()
        self.clear_expectedshots()

def stringException(exception):
    import traceback
    return ''.join(traceback.format_exception(type(exception), exception, exception.__traceback__))

try:
    import matplotlib.pyplot, matplotlib.cm, mpl_toolkits.mplot3d, time
    class PlottingDangerZones(DangerZones):
        """Arena object for calculating danger ratings and rendering 3D visualizations of the arena state and contents to both files and an interactive display on each turn."""
        plotparams = {'dangersize': 80, 'dangersizebase': 0.2, 'dangersizeexpo': 2.0, 'dangeralpha': 0.2, 'dangerres': 1, 'dangervrange': (0, 10), 'dangercmap': matplotlib.cm.nipy_spectral, 'dangermarker': 'o', 'allymarker': 's', 'enemymarker': 'D', 'vectormarker': 'x', 'planesize': 60, 'vectorsize': 50, 'planecolour': 'black', 'deathmarker': '*', 'deathsize': 700, 'deathcolours': ('darkorange', 'red'), 'deathalpha': 0.65, 'shotlength': 4, 'shotcolour': 'darkviolet', 'shotstyle': 'dashed'}
        enabledplots = ('enemies', 'allies', 'vectors', 'danger', 'deaths', 'shots', 'names')
        def __init__(self, dimensions=(13,13,13), plotparams=None, plotautoturn=0, plotsavedir=None, enabledplots=None, disabledplots=None, tickwait=0.0, plotcycle=0.001, **kwargs):
            DangerZones.__init__(self, dimensions, **kwargs)
            self.figure = None
            self.axes = None
            self.frame = None
            self.plotobjs = {}
            self.plotshown = False
            if plotparams:
                self.set_plotparams(plotparams)
            self.plotautoturn = plotautoturn
            self.plotsavedir = plotsavedir
            if enabledplots:
                self.enabledplots = tuple(enabledplots)
            if disabledplots:
                self.enabledplots = tuple(m for m in self.enabledplots if m not in disabledplots)
            self.tickwait = tickwait
            self.plotcycle = plotcycle
            self.lasttick = time.time()
        def set_plotparams(self, plotparams):
            self.plotparams = {**self.plotparams, **plotparams}
        def prepare_plotaxes(self, figure=None, clear=True):
            if self.figure is None and figure is None:
                self.figure = matplotlib.pyplot.figure()
                self.frame = 0
            if self.axes is None:
                self.axes = self.figure.add_subplot(projection='3d')
            elif clear:
                self.axes.clear()
            for d, h in zip((self.axes.set_xlim, self.axes.set_ylim, self.axes.set_zlim), self.dimensions):
                d(0, h)
            return (self.figure, self.axes)
        def plotter(kind):
            def plotterd(funct):
                def plott(self):
                    kws = dict(getattr(self, funct.__name__.replace('plot_', 'plotparams_'))())
                    if '*args' in kws:
                        args = tuple(kws.pop('*args'))
                    else:
                        args = tuple()
                    if False and funct.__name__ in self.plotobjs:
                        self.plotobjs[funct.__name__].set(**kws)
                    else:
                        self.plotobjs[funct.__name__] = getattr(self.axes, kind)(*args, **kws)
                return plott
            return plotterd
        def plotparams_enemies(self):
            r = {'xs': tuple(), 'ys': tuple(), 'zs': tuple(), 'marker': self.plotparams['enemymarker'], 's': self.plotparams['planesize'], 'c': self.plotparams['planecolour']}
            planes = tuple(self.filteractiveplanes(self.planes))
            if planes:
                r['xs'], r['ys'], r['zs'] = zip(*(p.coord for p in planes))
            return r
        def plotparams_allies(self):
            r = {'xs': tuple(), 'ys': tuple(), 'zs': tuple(), 'marker': self.plotparams['allymarker'], 's': self.plotparams['planesize'], 'c': self.plotparams['planecolour']}
            planes = tuple(self.filteractiveplanes(self.allies))
            if planes:
                r['xs'], r['ys'], r['zs'] = zip(*(p.coord for p in planes))
            return r
        def plotparams_vectors(self):
            r = {'xs': tuple(), 'ys': tuple(), 'zs': tuple(), 'marker': self.plotparams['vectormarker'], 's': self.plotparams['vectorsize'], 'c': self.plotparams['planecolour']}
            planes = tuple(self.filteractiveplanes(self.allies+self.planes))
            if planes:
                r['xs'], r['ys'], r['zs'] = zip(*(vecAdd(p.coord, p.vec) for p in planes))
            return r
        def plotparams_danger(self):
            r = {'xs': tuple(), 'ys': tuple(), 'zs': tuple(), 'marker': self.plotparams['dangermarker'], 'cmap': self.plotparams['dangercmap'], 'alpha': self.plotparams['dangeralpha']}
            coords = tuple(self.coords_grid((self.plotparams['dangerres'],)*len(self.dimensions)))
            r['xs'], r['ys'], r['zs'] = zip(*coords)
            r['c'] = tuple(self.rate_sumdanger(c) for c in coords)
            m = max(r['c'])
            r['s'] = tuple((d/m)**self.plotparams['dangersizeexpo']*self.plotparams['dangersize']+self.plotparams['dangersizebase'] for d in r['c'])
            if self.plotparams['dangervrange']:
                r['vmin'], r['vmax'] = self.plotparams['dangervrange']
            return r
        def plotparams_deaths(self):
            r = {'xs': tuple(), 'ys': tuple(), 'zs': tuple(), 'marker': self.plotparams['deathmarker'], 's': self.plotparams['deathsize'], 'c': self.plotparams['deathcolours'][0], 'linewidths': self.plotparams['deathsize']/180, 'edgecolors': self.plotparams['deathcolours'][1], 'alpha': self.plotparams['deathalpha']}
            deaths = tuple(p.lastcoord for p in self.planes+self.allies if p.lastalive and not p.alive)
            if deaths:
                r['xs'], r['ys'], r['zs'] = zip(*deaths)
            return r
        def plotparams_shots(self):
            r = {'length': self.plotparams['shotlength'], 'linestyles': self.plotparams['shotstyle'], 'color': self.plotparams['shotcolour'], 'arrow_length_ratio': 0.0, '*args': []}
            planes = tuple(p for p in self.filteractiveplanes(self.allies+self.planes) if not (p.lastcooldown is None or p.cooldown is None) and (p.cooldown > p.lastcooldown))
            if planes:
                for s in zip(*(p.coord for p in planes)):
                    r['*args'].append(s)
                for s in zip(*(p.vec for p in planes)):
                    r['*args'].append(s)
            else:
                for i in range(6):
                    r['*args'].append(tuple())
            return r
        @plotter('scatter')
        def plot_enemies(self):
            pass
        @plotter('scatter')
        def plot_allies(self):
            pass
        @plotter('scatter')
        def plot_vectors(self):
            pass
        @plotter('scatter')
        def plot_danger(self):
            pass
        @plotter('scatter')
        def plot_deaths(self):
            pass
        @plotter('quiver')
        def plot_shots(self):
            pass
        def plot_names(self):
            if 'plot_names' in self.plotobjs:
                pass
            self.plotobjs['plot_names'] = [self.axes.text(*p.coord, s=f"{p.name}") for i, p in enumerate(self.filteractiveplanes(self.allies+self.planes))]
        def plotall(self):
            for m in self.enabledplots:
                getattr(self, f'plot_{m}')()
        def updateallplots(self):
            self.prepare_plotaxes()
            self.plotall()
            if self.plotautoturn:
                self.axes.view_init(30, -60+self.frame*self.plotautoturn)
            matplotlib.pyplot.draw()
            if self.plotsavedir:
                import os
                os.makedirs(self.plotsavedir, exist_ok=True)
                self.figure.savefig(os.path.join(self.plotsavedir, f'{self.frame}.png'))
            self.frame += 1
            if not self.plotshown:
                matplotlib.pyplot.ion()
                matplotlib.pyplot.show()#block=False)
                self.plotshown = True
        def tickturn(self):
            DangerZones.tickturn(self)
            self.updateallplots()
            matplotlib.pyplot.pause(max(self.plotcycle, self.lasttick+self.tickwait-time.time()))
            self.lasttick = time.time()
except Exception as e:
    print(f"Could not define matplotlib rendering dangerzone handler:\n{stringException(e)}", file=sys.stderr)


def vecEquals(vec1, vec2):
    return tuple(vec1) == tuple(vec2)

def vecAdd(*vecs):
    return tuple(sum(p) for p in zip(*vecs))

def vecSub(vec1, vec2):
    return tuple(a-b for a, b in zip(vec1, vec2))

def vecMult(*vecs):
    return tuple(functools.reduce(lambda a, b: a*b, p) for p in zip(*vecs))

def vecDiv(vec1, vec2):
    return tuple(a-b for a, b in zip(vec1, vec2))

def vecDotProduct(*vecs):
    return sum(vecMult(*vecs))
    #return sum(d*p for d, p in zip(vec1, vec2))

def vecAngle(vec1, vec2):
    try:
        if all(c == 0 for c in vec1) or all(c == 0 for c in vec2):
            return math.nan
        return math.acos(max(-1, min(1, vecDotProduct(vec1, vec2)/Pythagorean(*vec1)/Pythagorean(*vec2))))
    except Exception as e:
        raise ValueError(f"{e!s}: {vec1} {vec2}")

def convertVecTrinary(vec, length=1):
    return tuple((max(-length, min(length, v*math.inf)) if v else v) for v in vec)

def getNeighbouringVecs(vec):
    vec = convertVecTrinary(vec, length=1)
    return {ve for ve in (tuple(v+(i//3**n%3-1) for n, v in enumerate(vec)) for i in range(3**len(vec))) if all(v in (-1,0,1) for v in ve) and any(v and v==vec[i] for i, v in enumerate(ve))}

def getVecRotation(vec1, vec2):
    #Just do a cross product/perpendicular to tangential plane/normal?
    pass

def applyVecRotation(vec, rotation):
    pass

class DangerZoner(Plane):
    """Dogfighting plane control object."""
    def __init__(self, arena, snipechance=0.60, snipechoices=3, firesafety=7.5, chasesafety=5.0, jinkdanger=math.inf, jink=0, name=None):
        Plane.__init__(self, True, None, None)
        self.arena = arena
        self.lookahead = 1
        self.snipechance = snipechance
        self.snipechoices = snipechoices
        self.firesafety = firesafety
        self.chasesafety = chasesafety
        self.jinkdanger = jinkdanger
        self.jink = jink
        self.vec = None
        self.name = name
    def get_enemies(self):
        return (p for p in self.arena.filteractiveplanes(self.arena.planes))
    def get_vecsuicidal(self, vec, coord=None, steps=5):
        if coord is None:
            coord = self.coord
        if all(3 < c < self.arena.dimensions[i]-3 for i, c in enumerate(coord)):
            return False
        if not all(0 < c < self.arena.dimensions[i] for i, c in enumerate(coord)):
            return True
        elif steps >= 0:
            return all(self.get_vecsuicidal(v, coord=vecAdd(coord, vec), steps=steps-1) for v in getNeighbouringVecs(vec))
        return False
    def get_sanevecs(self):
        legalvecs = self.get_legalvecs()
        s = {vec for vec in legalvecs if vecAdd(self.coord, vec) not in self.arena.get_expectedallies() and not any(vecAngle(vecSub(vecAdd(self.coord, vec), sc), sv) < 0.05 for sc, sv in self.arena.get_expectedshots()) and not self.get_vecsuicidal(vec, coord=vecAdd(self.coord, vec))}
        if not s:
            return legalvecs
            raise Exception()
        return s
    def rate_vec(self, vec, lookahead=None):
        if lookahead is None:
            lookahead = self.lookahead
        return self.arena.rate_sumdanger(tuple(c+v*lookahead for v, c in zip(vec, self.coord)), pself=self)
    def get_validshots(self, snipe=True):
        if snipe and random.random() < self.snipechance:
            enemypossibilities = set.union(*({vecAdd(p.coord, p.vec)} if not p.lastvec or vecEquals(p.vec, p.lastvec) else {vecAdd(p.coord, ve) for ve in sorted(p.get_legalvecs(), key=lambda v: -vecAngle(v, p.lastvec))[:self.snipechoices]} for p in self.get_enemies()))
        else:
            enemypossibilities = set().union(*(p.get_legalcoords() for p in self.get_enemies()))
        validshots = []
        if self.cooldown:
            return validshots
        for vec in self.get_sanevecs():
            coord = tuple(c + v for c, v in zip(self.coord, vec))
            if any(vecAngle(tuple(n-v for n, v in zip(t, self.coord)), self.vec) < 0.1 for t in enemypossibilities if t != self.coord) and not any(vecAngle(vecSub(a, coord), self.vec) < 0.05 for a in self.arena.get_expectedallies()):
                validshots.append({'vec': vec, 'turn': False, 'fire': True})
            if any(vecAngle(tuple(n-v for n, v in zip(t, self.coord)), vec) < 0.1 for t in enemypossibilities if t != self.coord) and not any(vecAngle(vecSub(a, coord), vec) < 0.05 for a in self.arena.get_expectedallies()):
                validshots.append({'vec': vec, 'turn': True, 'fire': True})
        if snipe and not validshots:
            validshots = self.get_validshots(snipe=False)
        return validshots
    def get_chase(self):
        enemydirs = {vecSub(vecAdd(p.coord, p.vec), self.coord) for p in self.get_enemies()}
        paths = sorted(self.get_sanevecs(), key=lambda vec: min([vecAngle(vec, e) for e in enemydirs if not all(v == 0 for v in e)]+[math.inf]))
        if paths:
            return paths[0]
    def get_move(self):
        if not self.alive:
            return {'vec': (1,1,1), 'turn': False, 'fire': False}
        fires = self.get_validshots()
        if fires:
            fires = sorted(fires, key=lambda d: self.rate_vec(d['vec']))
            if self.rate_vec(fires[0]['vec']) <= self.firesafety:
                return fires[0]
        vec = self.get_chase()
        if vec is None or self.rate_vec(vec) > self.chasesafety:
            vec = sorted(self.get_sanevecs(), key=self.rate_vec)
            vec = vec[min(len(vec)-1, random.randint(0,self.jink)) if self.rate_vec(vec[0]) > self.jinkdanger else 0]
        return {'vec': vec, 'turn': True, 'fire': False}
    def move(self):
        move = self.get_move()
        coord = vecAdd(self.coord, move['vec'])
        self.arena.add_expectedallies(coord)
        if move['fire']:
            self.arena.add_expectedshots((coord, move['vec'] if move['turn'] else self.vec))
        return move

VecsCarts = {(0,-1):'N', (0,1):'S', (1,1):'E', (1,-1):'W', (2,1):'U', (2,-1):'D'}

def translateCartVec(cartesian):
    vec = [0]*3
    for v,l in VecsCarts.items():
        if l in cartesian:
            vec[v[0]] = v[1]
    return tuple(vec)

def translateVecCart(vec):
    vec = convertVecTrinary(vec)
    return ''.join(VecsCarts[(i,v)] for i, v in enumerate(vec) if v != 0)

def parsePlaneState(text):
    return (lambda d: {'alive':{'alive': True, 'dead': False}[d[0]], 'coord':tuple(int(c) for c in d[1:4]), 'vec':translateCartVec(d[4]), 'cooldown': int(d[5])})(text.split(' '))

def encodePlaneInstruction(vec, turn, fire):
    return f"{translateVecCart(vec)} {int(bool(turn))!s} {int(bool(fire))!s}"

class CtrlReceiver:
    """Object for interacting through STDIN and STDOUT in a dogfight with an arena, controlled planes, and enemy planes."""
    def __init__(self, logname='danger_log.txt', arenatype=DangerZones, arenaconf=None, planetype=DangerZoner, planeconf=None, enemyname='Enemy', stdin=sys.stdin, stdout=sys.stdout):
        self.logname = logname
        self.arenatype = arenatype
        self.arenaconf = dict(arenaconf) if arenaconf else dict()
        self.planetype = planetype
        self.planeconf = dict(planeconf) if planeconf else dict()
        self.enemyname = enemyname
        self.stdin = stdin
        self.stdout = stdout
        self.log = open('danger_log.txt', 'w')
    def __enter__(self):
        return self
    def __exit__(self, *exc):
        self.log.__exit__()
    def getin(self):
        l = self.stdin.readline()
        self.log.write(f"IN: {l}")
        return l
    def putout(self, content):
        self.log.write(f"OUT: {content}\n")
        print(content, file=self.stdout, flush=True)
    def logout(self, content):
        self.log.write(f"MSG: {content}\n")
    def logerr(self, content):
        self.log.write(f"ERR: {content}\n")
    def run_setup(self, arenasize, rounds):
        self.arena = self.arenatype(dimensions=(arenasize,)*3, **self.arenaconf)
        self.planes = [self.planetype(arena=self.arena, name=f"{self.planetype.__name__} #{i}", **self.planeconf) for i in range(2)]
        self.arena.set_planes(*(Plane(True, None, None, name=f"{self.enemyname} #{i}") for i in range(2)))
        self.arena.set_allies(*self.planes)
    def run_move(self):
        self.arena.tickturn()
        for p in self.planes:
            p.update(**parsePlaneState(self.getin()))
        for p in self.arena.planes:
            p.update(**parsePlaneState(self.getin()))
        for p in self.planes:
            self.putout(encodePlaneInstruction(**p.move()))
    def run(self):
        line = ''
        while not line.startswith('NEW CONTEST '):
            line = self.getin()
        self.run_setup(arenasize=int(line.split(' ')[2])-1, rounds=None)
        while True:
            line = self.getin()
            if line.startswith('NEW TURN'):
                self.run_move()

if True and __name__ == '__main__' and not sys.flags.interactive:
    import time
    DoPlot = False
    #Use the arena object that visualizes progress every turn.
    DangerPlot = True
    #Compute and render a voxel cloud of danger ratings within the arena each turn if visualizing it.
    SparseDangerPlot = False
    #Use a lower resolution for the voxel cloud if visualizing danger ratings.
    TurntablePlot = True
    #Apply a fixed animation to the interactive visualization's rotation if visualizing the arena.
    with CtrlReceiver(logname='danger_log.txt', arenatype=PlottingDangerZones if DoPlot else DangerZones, arenaconf=dict(disabledplots=None if DangerPlot else ('danger'), plotparams=dict(dangerres=2) if SparseDangerPlot else dict(dangeralpha=0.1), plotautoturn=1 if TurntablePlot else 0, plotsavedir=f'PngFrames') if DoPlot else None, planetype=DangerZoner) as run:
        try:
            run.run()
        except Exception as e:
            run.logerr(stringException(e))
```
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.