Równolegle rzutowany generator terenu wokseli


20

Twoim zadaniem jest wygenerowanie mapy wysokości i pokazanie jej jako równolegle rzutowanego krajobrazu wokseli. Reguły są następujące:

  • (Mapa wysokości) krajobrazu musi być generowana losowo
  • Musisz także opisać działanie algorytmu, którego używasz, aby każdy mógł dowiedzieć się tutaj czegoś nowego
  • Musisz także wygenerować obraz lub wyświetlić wygenerowany krajobraz na ekranie
  • Powstały obraz musi być rzutowany równolegle (więc nie perspektywicznie) i może zawierać tylko woksele (więc musi być zrobiony z małych pudełek)
  • To konkurs popularności, więc możesz chcieć dodać dodatkowe funkcje do swojego programu, aby uzyskać więcej głosów pozytywnych.
  • Zwycięzca jest najbardziej pozytywnie ocenioną ważną odpowiedzią 7 dni po ostatnim ważnym zgłoszeniu. Wszystkie prawidłowe zgłoszenia muszą być zgodne z regułami, w tym z opisem zastosowanego algorytmu. Możesz dodać dodatkowe funkcje, które nie są zgodne z niektórymi zasadami (np. Dodanie trybu perspektywy), ale w tym przypadku muszą to być funkcje opcjonalne (np. Po ich wyłączeniu wynik powinien być zgodny z wszystkimi regułami)
  • Moje zgłoszenie nie jest uważane za ważne.

Przykładowy obraz wyniku jest następujący:

krajobraz wokseli

Zdjęcie zrobione stąd

Jeśli potrzebujesz algorytmów, sprawdź tutaj


Kostki renderowane w Minecrafcie nie są równe wokselom. Wymagana jest również prawdziwa projekcja izometryczna lub słowo używane luźno, jak to jest powszechnie używane w grach en.wikipedia.org/wiki/Video_games_with_isometric_graphics
shiona

@shiona: Opis tematu został zmieniony kilka dni temu, aby powiedzieć, że projektowane są równoległe, więc wszystko, co nie jest perspektywiczne, powinno się liczyć. Co do wokseli: myślę, że kostki minecraftesqe są ważne pod względem bycia wokselami: można je uznać za ogromne piksele na dużej siatce 3D.
SztupY

Nie, kostki Minecraftesque nie są wokselami, ponieważ woksele nie są kostkami, podobnie jak piksele nie są kwadratami. citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.9093
pseudonim

Zgadzam się z rodzajem @Pseudonim. Myślę, że jest to ważne, jeśli chcesz, aby były kostkami. Jednak eliminuje prawie każdą inną technikę rasteryzacji wokseli.
Tim Seguine,

Odpowiedzi:


12

Plotter funkcji Python2 3D Voxel Edition

Oto mój udział w tym konkursie:

import math
import random
import Image

terrain=""
randA=(random.random()*4+5)
randB=(random.random()*4+10)
randC=(random.random()*4+1)
randD=(random.random()*4+1)
im = Image.new("RGBA", (1248, 1000), "black")
tile=[Image.open("voxel/1.png"),Image.open("voxel/2.png"),Image.open("voxel/3.png"),Image.open("voxel/4.png"),Image.open("voxel/5.png"),Image.open("voxel/6.png"),Image.open("voxel/7.png"),Image.open("voxel/8.png"),Image.open("voxel/9.png")]


for y in range (-40,40):
        for x in range (-10, 10):
                val=int(1+abs(4+2.5*(math.sin(1/randA*x+randC)+math.sin(1/randB*y+randD))))
                if (val<9):
                        terrain+=str(val)
                else:
                        terrain+="9"
print terrain

for i in range (0,80*20):
        if((i/20)%2==0):
                shift=0
        else:
                shift=-32
        im.paste(tile[int(terrain[i])-1],((i%20)*64+shift,((i/20)*16-(32*(int(terrain[i])-1)))-32),tile[int(terrain[i])-1])

im.show()

Jak wyraźnie stwierdzono w tytule, działa on jako ploter funkcji 3D, ale ponieważ ta konkurencja wymaga losowego wygenerowania terenu, ta losowa funkcja sinusoidalna 1.5*(math.sin(1/randA*x+randC)+math.sin(1/randB*y+randD))zależy od 4 losowych zmiennych. Tworzy to takie tereny: Losowe wyjście

Możemy oczywiście zastąpić tę losową funkcję dowolną 2 zmienną funkcją, na przykład sin(sqrt((x/2)²+(y/2)²))*3daje ten teren: Funkcja 3D

i -x*y*e^(-x^2-y^2)daje to: Funkcja 3D 2
(wykresy po prawej są obliczane przez wolfram alfa)

A gdy już nad tym jesteśmy, Riemann zeta wzdłuż paska krytycznego:

Funkcja zeta Riemanna

Dla osób, które nie są obeznane z tym, ponieważ można zobaczyć te kałuże wody (które reprezentują zera funkcji) wszystkie leżą na linii prostej (część rzeczywista = 0,5). Jeśli możesz to udowodnić, otrzymasz 1000000 $! Zobacz ten link.

Mam nadzieję, że to lubisz!


Cześć Jens, fajne fabuły! Zastanawiałem się, skąd masz zdjęcia wokseli?
Willem,

Nie pamiętam dokładnie, gdzie przeszukałem grafiki Google i edytowałem farbą
Jens Renders

10

C #, WPF

Eksperymentowałem z przypadkowym spacerem , który działa lepiej, niż się spodziewałem. Zaczynam gdzieś na mapie, podchodzę do przypadkowego sąsiadującego kafelka i zwiększam jego wysokość , a następnie przechodzę do następnego i tak dalej. Jest to powtarzane tysiące razy i ostatecznie prowadzi do takiej mapy wysokości (100 x 100):

powiększona mapa wysokości mapa wysokości

Następnie „dyskretyzuję” mapę, zmniejszam liczbę wartości do podanych poziomów wysokości i przypisuję teren / kolor na podstawie tej wysokości:

powiększona mapa terenu mapa terenu

teren wokselowy 1

Więcej podobnych terenów podobnych do archipelagu:

teren wokselowy 2

teren wokselowy 3

teren wokselowy 4

teren wokselowy 5

Zwiększona liczba losowych kroków i poziomów wysokości, aby uzyskać bardziej górzysty teren:

wprowadź opis zdjęcia tutaj

wprowadź opis zdjęcia tutaj

wprowadź opis zdjęcia tutaj

wprowadź opis zdjęcia tutaj

wprowadź opis zdjęcia tutaj


Kod

Cechy: Odtwórz teren za pomocą przycisku. Pokaż teren 3D i mapę 2D. Powiększanie (kółko myszy) i przewijanie 3D (klawisze strzałek). Ale nie jest bardzo wydajny - w końcu jest napisany wyłącznie w WPF, a nie w DirectX lub OpenGL.

MainWindow.xaml:

<Window x:Class="VoxelTerrainGenerator.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        Title="Voxel Terrain Generator" Width="550" Height="280" KeyUp="Window_KeyUp">
    <Grid>
        <Grid.ColumnDefinitions>
            <ColumnDefinition Width="*"/>
            <ColumnDefinition Width="Auto"/>
        </Grid.ColumnDefinitions>

        <Viewport3D x:Name="ViewPort" MouseWheel="ViewPort_MouseWheel">
            <Viewport3D.Camera>
                <OrthographicCamera x:Name="Camera" Position="-100,-100,150" LookDirection="1,1,-1" UpDirection="0,0,1" Width="150" />
                <!--<PerspectiveCamera x:Name="Camera" Position="-100,-100,150" LookDirection="1,1,-1" UpDirection="0,0,1" />-->
            </Viewport3D.Camera>
        </Viewport3D>

        <Grid Grid.Column="1" Margin="10">
            <Grid.RowDefinitions>
                <RowDefinition Height="Auto"/>
                <RowDefinition Height="Auto"/>
            </Grid.RowDefinitions>

            <Image Grid.Row="0" x:Name="TopViewImage"/>
            <Button Grid.Row="1" Margin="0 10 0 0" Click="Button_Click" Content="Generate Terrain" />
        </Grid>
    </Grid>
</Window>

MainWindow.xaml.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows;
using System.Windows.Input;
using System.Drawing;
using System.Drawing.Imaging;
using System.Windows.Media.Media3D;

namespace VoxelTerrainGenerator
{
    public partial class MainWindow : Window
    {
        const int RandomSteps = 20000;
        const int MapLengthX = 100;
        const int MapLengthY = 100;
        const int MaxX = MapLengthX - 1;
        const int MaxY = MapLengthY - 1;
        const bool ForceIntoBounds = true;
        readonly Random Random = new Random();

        readonly List<Color> ColorsByHeight = new List<Color> 
        { 
            Color.FromArgb(0, 0, 50),
            Color.FromArgb(170, 170, 20),
            Color.FromArgb(0, 150, 0),
            Color.FromArgb(0, 140, 0),
            Color.FromArgb(0, 130, 0),
            Color.FromArgb(0, 120, 0),
            Color.FromArgb(0, 110, 0),
            Color.FromArgb(100, 100, 100),
        };

        public MainWindow()
        {
            InitializeComponent();
            TopViewImage.Width = MapLengthX;
            TopViewImage.Height = MapLengthY;
        }

        public int[,] CreateRandomHeightMap()
        {
            var map = new int[MapLengthX, MapLengthY];

            int x = MapLengthX/2;
            int y = MapLengthY/2;

            for (int i = 0; i < RandomSteps; i++)
            {
                x += Random.Next(-1, 2);
                y += Random.Next(-1, 2);

                if (ForceIntoBounds)
                {
                    if (x < 0) x = 0;
                    if (x > MaxX) x = MaxX;
                    if (y < 0) y = 0;
                    if (y > MaxY) y = MaxY;
                }

                if (x >= 0 && x < MapLengthX && y >= 0 && y < MapLengthY)
                {
                    map[x, y]++;
                }
            }

            return map;
        }

        public int[,] Normalized(int[,] map, int newMax)
        {
            int max = map.Cast<int>().Max();
            float f = (float)newMax / (float)max;

            int[,] newMap = new int[MapLengthX, MapLengthY];
            for (int x = 0; x < MapLengthX; x++)
            {
                for (int y = 0; y < MapLengthY; y++)
                {
                    newMap[x, y] = (int)(map[x, y] * f);
                }
            }
            return newMap;
        }

        public Bitmap ToBitmap(int[,] map)
        {
            var bitmap = new Bitmap(MapLengthX, MapLengthY);
            for (int x = 0; x < MapLengthX; x++)
            {
                for (int y = 0; y < MapLengthY; y++)
                {
                    int height = map[x, y];
                    if (height > 255)
                    {
                        height = 255;
                    }
                    var color = Color.FromArgb(255, height, height, height);
                    bitmap.SetPixel(x, y, color);
                }
            }
            return bitmap;
        }

        public Bitmap ToColorcodedBitmap(int[,] map)
        {
            int maxHeight = ColorsByHeight.Count-1;
            var bitmap = new Bitmap(MapLengthX, MapLengthY);
            for (int x = 0; x < MapLengthX; x++)
            {
                for (int y = 0; y < MapLengthY; y++)
                {
                    int height = map[x, y];
                    if (height > maxHeight)
                    {
                        height = maxHeight;
                    }
                    bitmap.SetPixel(x, y, ColorsByHeight[height]);
                }
            }
            return bitmap;
        }

        private void ShowTopView(int[,] map)
        {
            using (var memory = new System.IO.MemoryStream())
            {
                ToColorcodedBitmap(map).Save(memory, ImageFormat.Png);
                memory.Position = 0;
                var bitmapImage = new System.Windows.Media.Imaging.BitmapImage();
                bitmapImage.BeginInit();
                bitmapImage.StreamSource = memory;
                bitmapImage.CacheOption = System.Windows.Media.Imaging.BitmapCacheOption.OnLoad;
                bitmapImage.EndInit();
                TopViewImage.Source = bitmapImage;
            }
        }

        private void Show3DView(int[,] map)
        {
            ViewPort.Children.Clear();

            var light1 = new AmbientLight(System.Windows.Media.Color.FromArgb(255, 75, 75, 75));
            var lightElement1 = new ModelUIElement3D();
            lightElement1.Model = light1;
            ViewPort.Children.Add(lightElement1);

            var light2 = new DirectionalLight(
                System.Windows.Media.Color.FromArgb(255, 200, 200, 200),
                new Vector3D(0, 1, -0.1));
            var lightElement2 = new ModelUIElement3D();
            lightElement2.Model = light2;
            ViewPort.Children.Add(lightElement2);

            for (int x = 0; x < MapLengthX; x++)
            {
                for (int y = 0; y < MapLengthY; y++)
                {
                    int height = map[x, MapLengthY-y-1];
                    for (int h = 0; h <= height; h++)
                    {
                        Color color = ColorsByHeight[h];
                        if (height > 0 && h == 0)
                        {
                            // No water under sand
                            color = ColorsByHeight[1];
                        }

                        ViewPort.Children.Add(CreateCube(x, y, h, 1,
                            System.Windows.Media.Color.FromArgb(255, color.R, color.G, color.B)));
                    }
                }
            }
        }

        private ModelVisual3D CreateCube(int x, int y, int z, int length,
            System.Windows.Media.Color color)
        {
            List<Point3D> positions = new List<Point3D>()
            {
                new Point3D(x, y, z),
                new Point3D(x + length, y, z),
                new Point3D(x + length, y + length, z),
                new Point3D(x, y + length, z),
                new Point3D(x, y, z + length),
                new Point3D(x + length, y, z + length),
                new Point3D(x + length, y + length, z + length),
                new Point3D(x, y + length, z + length),
            };

            List<List<int>> quads = new List<List<int>> 
            { 
                new List<int> {3,2,1,0},
                new List<int> {0,1,5,4},
                new List<int> {2,6,5,1},
                new List<int> {3,7,6,2},
                new List<int> {3,0,4,7},
                new List<int> {4,5,6,7},
            };

            double halfLength = (double)length / 2.0;
            Point3D cubeCenter = new Point3D(x + halfLength, y + halfLength, z + halfLength);
            var mesh = new MeshGeometry3D();
            foreach (List<int> quad in quads)
            {
                int indexOffset = mesh.Positions.Count;
                mesh.Positions.Add(positions[quad[0]]);
                mesh.Positions.Add(positions[quad[1]]);
                mesh.Positions.Add(positions[quad[2]]);
                mesh.Positions.Add(positions[quad[3]]);

                mesh.TriangleIndices.Add(indexOffset);
                mesh.TriangleIndices.Add(indexOffset+1);
                mesh.TriangleIndices.Add(indexOffset+2);
                mesh.TriangleIndices.Add(indexOffset+2);
                mesh.TriangleIndices.Add(indexOffset+3);
                mesh.TriangleIndices.Add(indexOffset);

                double centroidX = quad.Select(v => mesh.Positions[v].X).Sum() / 4.0;
                double centroidY = quad.Select(v => mesh.Positions[v].Y).Sum() / 4.0;
                double centroidZ = quad.Select(v => mesh.Positions[v].Z).Sum() / 4.0;
                Vector3D normal = new Vector3D(
                    centroidX - cubeCenter.X,
                    centroidY - cubeCenter.Y,
                    centroidZ - cubeCenter.Z);
                for (int i = 0; i < 4; i++)
                {
                    mesh.Normals.Add(normal);
                }
            }

            Material material = new DiffuseMaterial(new System.Windows.Media.SolidColorBrush(color));
            GeometryModel3D model = new GeometryModel3D(mesh, material);
            ModelVisual3D visual = new ModelVisual3D();
            visual.Content = model;
            return visual;
        }

        private void Button_Click(object sender, RoutedEventArgs e)
        {
            int[,] map = CreateRandomHeightMap();
            int[,] normalizedMap = (Normalized(map, ColorsByHeight.Count-1));

            ShowTopView(normalizedMap);
            Show3DView(normalizedMap);

            ToBitmap(Normalized(map, 255)).Save("heightmap-original.png");
            ToBitmap(Normalized(normalizedMap, 255)).Save("heightmap.png");
            ToColorcodedBitmap(normalizedMap).Save("terrainmap.png");
        }

        private void ViewPort_MouseWheel(object sender, MouseWheelEventArgs e)
        {
            // Zoom in or out
            Camera.Width -= (double)e.Delta / 100;
        }

        private void Window_KeyUp(object sender, KeyEventArgs e)
        {
            // Scrolling by moving the 3D camera
            double x = 0;
            double y = 0;
            if (e.Key == Key.Left)
            {
                x = +10;
                y = -10;
            }
            else if (e.Key == Key.Up)
            {
                x = -10;
                y = -10;
            }
            else if (e.Key == Key.Right)
            {
                x = -10;
                y = +10;
            }
            else if (e.Key == Key.Down)
            {
                x = +10;
                y = +10;
            }

            Point3D cameraPosition = new Point3D(
                Camera.Position.X + x,
                Camera.Position.Y + y,
                Camera.Position.Z);
            Camera.Position = cameraPosition;
        }
    }
}

Zgrabne, ale może wyglądać lepiej, gdy „dyskrecjonujesz”, aby dołączyć więcej wiader. Może jeszcze tylko jedna lub dwie grupy? (W żadnym wypadku nie jest to konieczne! Nadal +1 ode mnie.)
Gaffi

1
@Gaffi Dodałem więcej wyników, w tym bardziej górzyste
Sebastian Negraszus

4

JavaScript i Crafty.JS, aby zostać znacznie ulepszone

Oto przykładowy wynik:

zrzut ekranu

A oto kod (pełna strona):

<!DOCTYPE html>
<html>
<head>
    <script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.4.3/jquery.min.js"></script>
    <script type="text/javascript" src="http://craftyjs.com/release/0.4.2/crafty-min.js"></script>
    <script type="text/javascript">

    $(document).ready(function() {
        Crafty.init();

        var tilesize = 20
        Crafty.sprite(20, "sprite.png#UPDATE", {
            grass1: [0,0,1,3],
            grass2: [1,0,1,3],
            grass3: [2,0,1,3],
            stone1: [3,0,1,3],
            stone2: [4,0,1,3]
        });

        genTerrainInit()
        while(1) {
            try { stepTerrainGen() }
            catch(e) { break }
        }


        iso = Crafty.isometric.init(20);
        var z = 0;
        for(var i = tdata.length - 1; i >= 0; i--) {
            for(var y = 0; y < tdata[i].length; y++) {
                var which = Math.max(0, Math.round(tdata[i][y]))
                var tile = Crafty.e("2D, DOM, "+["grass1", "grass2", "grass3", "stone1", "stone2"][which])
                .attr('z',i+1 * y+1)

                iso.place(i,y,0, tile);
            }
        }

        Crafty.addEvent(this, Crafty.stage.elem, "mousedown", function(e) {
            if(e.button > 1) return;
            var base = {x: e.clientX, y: e.clientY};

            function scroll(e) {
                var dx = base.x - e.clientX,
                    dy = base.y - e.clientY;
                    base = {x: e.clientX, y: e.clientY};
                Crafty.viewport.x -= dx;
                Crafty.viewport.y -= dy;
            };

            Crafty.addEvent(this, Crafty.stage.elem, "mousemove", scroll);
            Crafty.addEvent(this, Crafty.stage.elem, "mouseup", function() {
                Crafty.removeEvent(this, Crafty.stage.elem, "mousemove", scroll);
            });
        });
    });

    function genTerrainInit() {
        //Variables
        size = Math.pow(2, 6) + 1; //MUST be a power of 2 plus 1!
        initHeight = 2;
        rndRange = 4;
        smoothSpeed = 0.5; // lower is faster

        tdata = new Array(size);
        toAverage = new Array(size);
        for (var i = 0; i < size; i ++) {
            tdata[i] = new Array(size);
            toAverage[i] = new Array(size);
            for (var i2 = 0; i2 < size; i2 ++) {
                tdata[i][i2] = null;
                toAverage[i][i2] = false;
            }
        }

        //Generate corners
        tdata[0][0] = initHeight;
        tdata[size-1][0] = initHeight;
        tdata[0][size-1] = initHeight;
        tdata[size-1][size-1] = initHeight;
    }

    function stepTerrainGen() {
        //The square step - for each square, take the center point and set it to the average of its corners plus a random amount
        oldi = 0;
        for (var i = 1; i < size; i ++) {
            if (tdata[0][i] != null) {
                oldi2 = 0;
                for (var i2 = 1; i2 < size; i2 ++) {
                    if (tdata[i2][i] != null) {
                        pointDistance = (i - oldi)/2;
                        tdata[(oldi2 + i2)/2][(oldi + i)/2] =
                            ((tdata[oldi2][oldi] + tdata[i2][oldi] + tdata[oldi2][i] + tdata[i2][i])/4) // average of 4 corners
                            + Math.random() * rndRange - (rndRange/2.0);                                // plus a random amount

                        // Now mark the squares for the diamond step
                        toAverage[(oldi2 + i2)/2][oldi] = true;
                        toAverage[oldi2][(oldi + i)/2] = true;
                        toAverage[(oldi2 + i2)/2][i] = true;
                        toAverage[i2][(oldi + i)/2] = true;
                        oldi2 = i2;
                    }
                }
                oldi = i;
            }
        }

        //The diamond step - same as the square step but with newly formed diamonds
        for (var i = 0; i < size; i ++) {
            for (var i2 = 0; i2 < size; i2 ++) {
                if (toAverage[i][i2]) {
                    diamondArray = [];
                    if (i-pointDistance >= 0) diamondArray = diamondArray.concat(tdata[i-pointDistance][i2]);
                    if (i+pointDistance < size) diamondArray = diamondArray.concat(tdata[i+pointDistance][i2]);
                    if (i2-pointDistance >= 0) diamondArray = diamondArray.concat(tdata[i][i2-pointDistance]);
                    if (i2+pointDistance < size) diamondArray = diamondArray.concat(tdata[i][i2+pointDistance]);
                    addedPoints = 0;
                    for (var i3 = 0; i3 < diamondArray.length; i3 ++) addedPoints += diamondArray[i3];
                    tdata[i][i2] = addedPoints/diamondArray.length + Math.floor(Math.random() * rndRange - (rndRange/2.0));
                }
            }
        }
        rndRange *= smoothSpeed;
        resetToAverage();
    }

    function resetToAverage() {
        for (var i = 0; i < size; i ++) {
            for (var i2 = 0; i2 < size; i2 ++) {
                toAverage[i][i2] = false;
            }
        }
    }

    </script>
    <title>Iso</title>
    <style>
    body, html { margin:0; padding: 0; overflow:hidden }
    </style>
</head>
<body>
</body>
</html>

Oto sprite.png:

sprite.png

Teraz mam kilka rzeczy do powiedzenia.

  1. Nie oceniaj mnie za ten okropny kod! : PI napisał to wiele lat temu, gdy byłem okropnym programistą. Tak naprawdę to z dawnych czasów strony, którą miałem, a nawet nie pamiętałem, że miałem! http://oddllama.cu.cc/terrain/

  2. W pewnym sensie skopiowałem mnóstwo kodu z demo Crafty.JS Isometric. : P

  3. Wyjaśnienie nastąpi wkrótce! Muszę teraz iść spać, bo tu jest późno. (Dlatego też duszek jest taki okropny!)

Zasadniczo jest to naprawdę nieoszlifowane i zostanie znacznie poprawione później!

Wykorzystuje ten sam algorytm kwadratu diamentowego, o którym mowa w odpowiedzi PO.


Czy możemy pożyczyć te duszki do użytku w innych językach?
PyRulez

@PyRulez Cóż, trochę ukradłem je (i edytowałem) ze strony Crafty.JS, więc nie mam pojęcia: P może powinienem był o tym wspomnieć
Klamka

3

Ruby + RMagick

Używam algorytmu Diamond-Square do generowania mapy wysokości.

Algorytm w skrócie:

  • Użyj owijającej macierzy tablicowej o rozmiarze 2 ^ n
  • Zawijanie oznacza, że ​​dowolny indeks poza granicami zawija się, np. Jeśli rozmiar tablicy wynosi 4 [0,0] == [4,0] == [0,4] == [4,4]. Również [-2,0] == [2,0]itp.
  • Ustaw [0,0]losowy kolor
  • Postępuj zgodnie z instrukcjami pokazanymi na obrazku.

Objaśnienie obrazu

  • Zauważ, że ponieważ tablica się zawija, kiedy musisz zaindeksować coś poza granicami, możesz użyć danych z drugiej strony tablicy.
  • Zauważ też, że w pierwszym kroku cztery rogi oznaczają dokładnie tę samą wartość (as [0,0] == [4,0] == [0,4] == [4,4])
  • Aby obliczyć wartość czarnej kropki, musisz uśrednić cztery otaczające ją punkty
  • Ponieważ spowoduje to nudny, szary obraz, musisz dodać losową liczbę do tej wartości na każdym kroku. Preferowane jest, aby ta losowa wartość obejmowała cały zakres przy pierwszej iteracji, ale zmniejsza się z czasem, gdy adresowane są coraz mniejsze podzbiory tablicy. Im mniej ta losowość maleje z czasem, tym bardziej hałaśliwy będzie obraz.

  • Po zakończeniu po prostu przypisuję kolor do każdej wartości wysokości.

Kod:

generate.rb

#!/usr/bin/env ruby
require 'rubygems'
require 'bundler/setup'
Bundler.require(:default)

class Numeric
  def clamp min, max
    [[self, max].min, min].max
  end
end

class WrappedArray
  def initialize(size)
    @size = size
    @points = Array.new(size){Array.new(SIZE)}
  end
  def [](y,x)
    @points[(@size+y) % @size][(@size+x) % @size]
  end
  def []=(y,x,value)
    @points[(@size+y) % @size][(@size+x) % @size] = value.clamp(0,@size*@size-1)
  end
end

SIZE = 256
MAXHEIGHT = 256*256

points = WrappedArray.new(SIZE)

points[0,0] = 0

s = SIZE
d = []
sq = []
r = MAXHEIGHT
while s>1
  (0...SIZE).step(s) do |x|
    (0...SIZE).step(s) do |y|
      d << [y,x]
    end
  end
  while !d.empty?
    y,x = *d.shift
    mx = x+s/2
    my = y+s/2

    points[my,mx]  = (points[y,x]   + points[y,x+s]      + points[y+s,x] + points[y+s,x+s])/4 + rand(r)-r/2
    sq << [my,x]
    sq << [my,x+s]
    sq << [y,mx]
    sq << [y+s,mx]
  end
  while !sq.empty?
    y,x = *sq.shift
    points[y,x]    = (points[y-s/2,x] + points[y+s/2,x] + points[y,x-s/2] + points[y,x+s/2])/4 + rand(r)-r/2
  end
  s = s / 2
  r = r * 2 / 3
end

def get_color(height)
  val = height.to_f/MAXHEIGHT*3-1
  r = 0
  g = 0
  b = 0
  if val<=-0.25
    Magick::Pixel.new(0,0,128*256)
  elsif val<=0
    Magick::Pixel.new(0,0,255*256)
  elsif val<=0.0625
    Magick::Pixel.new(0,128*256,255*256)
  elsif val<=0.1250
    Magick::Pixel.new(240*256,240*256,64*256)
  elsif val<=0.3750
    Magick::Pixel.new(32*256,160*256,0)
  elsif val<=0.7500
    Magick::Pixel.new(224*256,224*256,0)
  else
    Magick::Pixel.new(128*256,128*256,128*256)
  end
end

canvas = Magick::ImageList.new
canvas.new_image(SIZE+1, SIZE+1)
0.upto(SIZE) do |y|
  0.upto(SIZE) do |x|
    canvas.pixel_color(x,y,get_color(points[y,x]))
  end
end
canvas.write('result.png')

Gemfile

source "https://rubygems.org"
gem 'rmagick'

Uwaga: Imagemagick, z którego korzystam, jest 16-bitowy

Obraz wynikowy:

wynik obrazu

Uwaga: ten obraz jest izometryczną reprezentacją z góry na dół, gdzie rozmiar jednego woksela wynosi dokładnie jeden piksel, więc jest zgodny z regułami (z wyjątkiem jednego: moja odpowiedź nie jest uważana za prawidłową)


Czy jakość jednego pikselowego izometrycznego rozwiązania jest wskaźnikiem powagi, z jaką chcesz, aby ludzie podeszli do twojego pytania?
Jonathan Van Matre

Nie sądzę, że odgórne liczy się jako izometryczne? en.wikipedia.org/wiki/Isometric_projection
mattnewport

@JonathanVanMatre: W pytaniu pokazałem pożądany rezultat. W odpowiedzi wskazałem minimum, jakie powinieneś zrobić, aby odpowiedź była ważna. Ponieważ jest to konkurs popularności, możesz wybrać, co chcesz zrobić, ale oczywiście powinieneś dążyć do osiągnięcia pożądanego rezultatu.
Sztuczki

@mattnewport: Dobra uwaga, omyłkowo użyłem go do wszelkiego rodzaju projekcji równoległych. Naprawiony.
Sztuczki

3

Java (używając kolorowego obrazu @ fejesjoco jako algorytmu podstawowego)

Po zabawie z kolorowymi obrazami FullRGB z @fejesjoco zauważyłem, że można je wykorzystać jako bazę do ciekawych krajobrazów z klifami wokselowymi. Zamiast reimplementacji algorytmu użyłem jego kodu jako zewnętrznego pliku wykonywalnego (pobierz go z http://joco.name/2014/03/02/all-rgb-colors-in-one-image/ i umieść go o nazwie artgen. exe w tym samym katalogu)

Zapowiedź:
Zapowiedź

zastosowana mapa wysokości (przechowywana w niebieskim kanale)
Mapa wysokości

Obraz wejściowy:
Wejście

Użyty z niego pod-algorytm działa w ten sposób:
1. Sortowanie
2. Zacznij od czarnego piksela w środku
3. Aż do użycia wszystkich kolorów: umieść bieżący kolor w najbliższym pasującym miejscu i dodaj nieużywane sąsiady jako nowe użyteczne miejsca Po zakończeniu zmieniam go, aby zredukować do 256 różnych wartości red&(green|blue) 4. następnie używam wstępnie wygenerowanych duszków i generuję obraz warstwa po warstwie

import java.awt.Graphics;
import java.awt.Image;
import java.awt.image.BufferedImage;
import java.io.BufferedReader;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.InputStreamReader;
import java.util.zip.ZipEntry;
import java.util.zip.ZipInputStream;
import javax.imageio.ImageIO;
import javax.xml.bind.DatatypeConverter;

/*
 * To change this template, choose Tools | Templates
 * and open the template in the editor.
 */

/**
 *
 * @author LH
 */
public class Voxelizer2
{
    static final String zipembeddedsprites =
            "UEsDBAoAAAAAAJy4Y0RIepnubQEAAG0BAAAJAAAAZ3Jhc3MucG5niVBORw0KGgoAAAANSUhEUgAAABgAAA"+
            "AYCAYAAADgdz34AAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAB3RJTUUH3gMDFgQ3dY+9CAAA"+
            "AB1pVFh0Q29tbWVudAAAAAAAQ3JlYXRlZCB3aXRoIEdJTVBkLmUHAAAA0UlEQVRIx9XVsRHCMAyFYYnLBsksWSD0jMFsnBv"+
            "oYQG28AAUqVOIJvZdZMSTwRS8isL83wUOzCJCnvGFNwflIOx6HwJ0WA9BJoDCXqgAasMIysC3YQtiOlPTsF5H9/XV2LgcEpDW"+
            "Cgr6CfQ+hYL1EVnzQgH80Ka+FyKi2/Hx/uRYF55O3RZIg1D0hYsn0DOh6AtDwISiL+wGCij6wtVA3jxXHd/Rj/f/QP673g+Dt"+
            "PwOrsvCLy8cCAEgheGVaUIGoMPuS7+AFGCF3UABrQAKpz0BwAN2ISfnFZcAAAAASUVORK5CYIJQSwMECgAAAAAAwbhjRGZ6lp"+
            "5LAQAASwEAAAkAAABzdG9uZS5wbmeJUE5HDQoaCgAAAA1JSERSAAAAGAAAABgIBgAAAOB3PfgAAAAGYktHRAD/AP8A/6C9p5MAA"+
            "AAJcEhZcwAACxMAAAsTAQCanBgAAAAHdElNRQfeAwMWBgGIA0oTAAAAHWlUWHRDb21tZW50AAAAAABDcmVhdGVkIHdpdGggR0lNU"+
            "GQuZQcAAACvSURBVEjH7dXBDcMgDIVhU3U2luDAVGwASzAASzAMPURGqhPrmYbe4mNE/k9BCrgxBlmmlPK1MITgLO85BMiwHASpA"+
            "ApboROwGkbQBO6GNcjlnLeG5bxrrURE5L3fGk4pHQA/2AVxeH6BXPArJMMqsAppYQggCIXNgIR670tb96I/zwM8wP2Zx3WM0XSqWv"+
            "+D1pq7vHAQhAAOwytTgzRAhs2XvoQkoIXNgIQYQGGeD4QxdHmEfUlXAAAAAElFTkSuQmCCUEsDBAoAAAAAAEl9Y0Q2U8gdJwEAACcBA"+
            "AAJAAAAd2F0ZXIucG5niVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAAsT"+
            "AAALEwEAmpwYAAAAB3RJTUUH3gMDDioRvrDDEQAAAB1pVFh0Q29tbWVudAAAAAAAQ3JlYXRlZCB3aXRoIEdJTVBkLmUHAAAAi0lEQV"+
            "RIx+2VQQ6AMAgEwd/Kg/juerEaUQJt8dY515nUJsAAKAMzPQ4CxKnvooAVW6KQG4jE2dAr0CuOQldgVuyFmAil4tcvItrPgBarxQYaW"+
            "iL+uIFFp8SJQDYk2TeI0C7xQGCMjX5mBVagYNjd41qKx7Wys3AEFeLEyhTMiDuWvmBEnA54oUjcOAD4sVBwKhEKKQAAAABJRU5ErkJg"+
            "glBLAQI/AAoAAAAAAJy4Y0RIepnubQEAAG0BAAAJACQAAAAAAAAAIAAAAAAAAABncmFzcy5wbmcKACAAAAAAAAEAGAD1dUScLDfPAeY"+
            "u0WzuNs8B5i7RbO42zwFQSwECPwAKAAAAAADBuGNEZnqWnksBAABLAQAACQAkAAAAAAAAACAAAACUAQAAc3RvbmUucG5nCgAgAAAAAA"+
            "ABABgAjxW2wyw3zwGyVc6t7jbPAbJVzq3uNs8BUEsBAj8ACgAAAAAASX1jRDZTyB0nAQAAJwEAAAkAJAAAAAAAAAAgAAAABgMAAHdhdG"+
            "VyLnBuZwoAIAAAAAAAAQAYAM5emMbuNs8BrSG4se42zwGtIbix7jbPAVBLBQYAAAAAAwADABEBAABUBAAAAAA=";
    public static void main(String[] args) throws Exception
    {
        //embedded zip idea borrowed from over here:
        //http://codegolf.stackexchange.com/a/22262/10801

        //algorithm and embedded executable borrowed from
        //http://joco.name/2014/03/02/all-rgb-colors-in-one-image/

        //256 8192 2048 4096 1024 1000 9263 11111111 hue-0 one
        /**/
        ProcessBuilder p = new ProcessBuilder("artgen","64","512","512","256","256","1",((int)(Math.random()*(2<<32)))+"","11111111","hue-0","one");
        Process po = p.start();
        BufferedReader x = new BufferedReader(new InputStreamReader(po.getInputStream()),1024);
        String xl = x.readLine();
        //String x2l = x2.readLine();
        while(!xl.startsWith("Press ENTER to exit"))
        {
            System.out.println(xl);
            xl=x.readLine();
        }
        System.out.println(xl);
        po.destroy();/**/
        BufferedImage source = ImageIO.read(new File("result00000.png"));
        BufferedImage heightmap = new BufferedImage(source.getWidth(), source.getHeight(), BufferedImage.TYPE_INT_RGB);
        for (int i = 0; i < source.getWidth(); i++)
        {
            for (int j = 0; j < source.getHeight(); j++)
            {
                int basecolor=source.getRGB(i, j)&0x00FFFFFF;
                int r = (basecolor&0x00FF0000)>>16;
                int g = (basecolor&0x0000FF00)>>8;
                int b = (basecolor&0x000000FF);
                int color = r&(g|b);//Math.max(r,Math.max(g,b));
                heightmap.setRGB(i, j, color);

            }
        }/**/
        ImageIO.write(heightmap, "png", new File("heightmap.png"));


        //generate sizedata for Sprites....

        ZipInputStream zippedSprites = new ZipInputStream(new ByteArrayInputStream(DatatypeConverter.parseBase64Binary(zipembeddedsprites)));
        ZipEntry z = zippedSprites.getNextEntry();
        BufferedImage water=null,grass=null,stone=null,air = new BufferedImage(24,24, BufferedImage.TYPE_INT_ARGB);
        while(z!=null)
        {
            String name = z.getName();
            switch(name)
            {
                case "water.png":
                    water=ImageIO.read(zippedSprites);
                    System.out.println("water");
                break;
                case "stone.png":
                    stone=ImageIO.read(zippedSprites);
                    System.out.println("stone");
                break;
                case "grass.png":
                    grass=ImageIO.read(zippedSprites);
                    System.out.println("grass");
                break;
            }
            z=zippedSprites.getNextEntry();
        }

        //int height = heightmap.getHeight()*12+12;
        int width16 = heightmap.getWidth()/16;
        int height16=heightmap.getHeight()/16;
        int widthtemp1 = 384+(height16-1)*(384/2);
        int width = (width16-1)*(384/2)+widthtemp1;
        //int heightt1=height16*(12*16)+12*16;
        int height = (width16-1)*(12*16)+(12*16);
        System.out.println(width*height);
        //if(true)return;

        int StartPos =heightmap.getHeight()*12;

        //BufferedImage[] layers = new BufferedImage[256];

        BufferedImage complete = new BufferedImage(width, height+(255*12), BufferedImage.TYPE_INT_ARGB);
        int mergeOffset=255*12;
        for (int i = 0; i < 256; i++)
        {
            System.out.println("Rendering layer"+i);
            BufferedImage layer = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
            int basePointerX = StartPos-12;
            int basePointerY=0;
            Graphics g = layer.getGraphics();
            for (int k = 0; k < heightmap.getHeight(); k++)
            {
                //System.out.println("Processing line"+k);
                int pointerX = basePointerX;
                int pointerY = basePointerY;
                for (int j = 0; j < heightmap.getWidth(); j++)
                {

                    Image tile = air;
                    int pxheight =heightmap.getRGB(j, k)&0x00FFFFFF;
                    if(pxheight>i)
                    {
                        tile=stone;
                    }
                    if(pxheight==i)
                    {
                        if(i<64)
                        {
                            tile=stone;
                        }
                        else
                        {
                            tile=grass;
                        }
                    }
                    if(pxheight<i)
                    {
                        if(i<64)
                        {
                            tile=water;
                        }
                        else
                        {
                            tile=air;
                        }
                    }
                    g.drawImage(tile, pointerX, pointerY, null);
                    pointerX+=12;
                    pointerY+=6;
                }

                basePointerX-=12;
                basePointerY+=6;


            }

            //

            complete.getGraphics().drawImage(layer, 0, mergeOffset, null);

            mergeOffset-=12;
        }
        ImageIO.write(complete, "png", new File("landscape.png"));
    }
}

1

HTML + JavaScript

Oto moja próba konkursu:

<html>
    <head>
        <script type='text/javascript' language='JavaScript'>
            function create() {
                var con = document.getElementById("can").getContext("2d"),
                    map = new Array(),
                    p = new Array(15 + Math.floor(Math.random() * 10)),
                    tc = ["#000040", "#000070", "#0000a0", "#5050ff", "#f0f000", "#007000", "#00aa00", "#00c000", "#00e000", "#00ff00", "#90ff90", "#a0ffa0", "#c0ffc0", "#e0ffe0", "#f0fff0"],
                    sc = ["#000020", "#000050", "#000085", "#3030df", "#d0d000", "#005000", "#008000", "#008000", "#00b500", "#00d000", "#00ea00", "#80ff80", "#a0ffa0", "#c0ffc0", "#d0ffd0"];
                for (var n = 0; n < p.length; n++) {
                    p[n] = [15 + Math.floor(Math.random() * 70), 15 + Math.floor(Math.random() * 70)];
                }
                for (var x = 0; x < 100; x++) {
                    map[x] = new Array();
                    for (var y = 0; y < 100; y++) {
                        map[x][y] = 0;
                        for (var n = 0; n < p.length; n++) {
                            if (20 - Math.sqrt(Math.pow(x - p[n][0], 2) + Math.pow(y - p[n][1], 2)) > map[x][y]) {
                                map[x][y] = 20 - Math.sqrt(Math.pow(x - p[n][0], 2) + Math.pow(y - p[n][2], 2));
                            }
                        }
                    }
                }
                for (var x = 0; x < 100; x++) {
                    for (var y = 0; y < 100; y++) {
                        if (map[x][y] < 0) {
                            map[x][y] = 0;
                        }
                        map[x][y] = Math.floor(map[x][y] / 2);
                        con.fillStyle = tc[map[x][y]];
                        con.fillRect(x * 10, y * 10 - map[x][y] * 4, 10, 10);
                        con.fillStyle = sc[map[x][y]];
                        con.fillRect(x * 10, y * 10 - map[x][y] * 4 + 10, 10, map[x][y] * 4);
                    }
                }
            }
        </script>
    </head>
    <body>
        <canvas id='can' width='1000' height='1000' style='border: 1px solid #000000;'></canvas>
        <button onclick='create();'>Create</button>
    </body>
</html>

Używam algorytmu Euclidean F1 Cell Noise do generowania mapy wysokości, którą następnie przekształcam w obraz, pobierając odpowiedni kolor z tablicy i rysując kwadrat o wysokości 10x, 10y, aby wyższe piksele były podnoszone. Następnie rysuję prostokąt jako bok, używając tego samego koloru z innej tablicy.

Hałas komórki 1 Hałas komórki 2

Oto ten sam kod przy użyciu algorytmu 10 000 kroków losowego marszu:

<html>
    <head>
        <script type='text/javascript' language='JavaScript'>
            function create() {
                var con = document.getElementById("can").getContext("2d"),
                    map = new Array(),
                    l = 10000,
                    tc = ["#000040", "#000070", "#0000a0", "#5050ff", "#f0f000", "#007000", "#00aa00", "#00c000", "#00e000", "#00ff00", "#90ff90", "#a0ffa0", "#c0ffc0", "#e0ffe0", "#f0fff0"],
                    sc = ["#000020", "#000050", "#000085", "#3030df", "#d0d000", "#005000", "#008000", "#008000", "#00b500", "#00d000", "#00ea00", "#80ff80", "#a0ffa0", "#c0ffc0", "#d0ffd0"];
                for (var x = 0; x < 100; x++) {
                    map[x] = new Array();
                    for (var y = 0; y < 100; y++) {
                        map[x][y] = 0;
                    }
                }
                x = 49;
                y = 49;
                for (var n = 0; n < l; n++) {
                    var d = Math.floor(Math.random() * 4);
                    if (d == 0) {
                        x++
                    }
                    else if (d == 1) {
                        y++
                    }
                    else if (d == 2) {
                        x--
                    }
                    else if (d == 3) {
                        y--
                    }
                    map[(x % 100 + 100) % 100][(y % 100 + 100) % 100]++;
                }
                for (var x = 0; x < 100; x++) {
                    for (var y = 0; y < 100; y++) {
                        if (map[x][y] < 0) {
                            map[x][y] = 0;
                        }
                        map[x][y] = Math.floor(map[x][y] / 2);
                        con.fillStyle = tc[map[x][y]];
                        con.fillRect(x * 10, y * 10 - map[x][y] * 4, 10, 10);
                        con.fillStyle = sc[map[x][y]];
                        con.fillRect(x * 10, y * 10 - map[x][y] * 4 + 10, 10, map[x][y] * 4);
                    }
                }
            }
        </script>
    </head>
    <body>
        <canvas id='can' width='1000' height='1000' style='border: 1px solid #000000;'></canvas>
        <button onclick='create();'>Create</button>
    </body>
</html>

Losowy spacer 1 ! [Random Walk 2] [4]

Kiedy „schodzi” z jednej krawędzi, owija się na drugiej, dzięki czemu nadal wygląda dobrze kafelkami.

Jest to technicznie równoległe, tylko pod innym kątem.

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.