Hashing o dowolnej długości


16

Rozważmy masz funkcji skrótu H , który trwa ciągi długości 2n i powrót ciągi o długości n i ma tę właściwość, piękny, że jest odporna na zderzenia , czyli trudno jest znaleźć dwa różne ciągi ss z tego samego skrótu H(s)=H(s) .

Chciałbyś teraz zbudować nową funkcję skrótu H która pobiera ciągi o dowolnej długości i odwzorowuje je na ciągi o długości n , zachowując jednocześnie odporność na kolizje.

Na szczęście już w 1979 r. Opublikowano metodę znaną obecnie jako konstrukcja Merkle – Damgård, która osiąga właśnie to.

Zadaniem tego wyzwania będzie wdrożenie tego algorytmu, dlatego najpierw przejrzymy formalny opis konstrukcji Merkle – Damgård, a następnie przejrzymy krok po kroku przykład, który powinien wykazać, że podejście jest prostsze niż może się na początku pojawić.

Biorąc pod uwagę liczbę całkowitą n>0 , funkcję skrótu H jak opisano powyżej i ciąg wejściowy s o dowolnej długości, nowa funkcja skrótu H wykonuje następujące czynności:

  • Ustaw l=|s|, długość s i podział s na kawałki o długości n , w razie potrzeby wypełniając ostatni fragment końcowymi zerami. Daje to m=lnwiele kawałków oznaczonych jakoc1,c2,,cm.
  • Dodaj początkowy i końcowy fragment c0 i cm+1 , gdzie c0 jest łańcuchem składającym się z n zer, a cm+1 jest n binarnie, wypełnione zerami wiodącymi do długości n .
  • Teraz iteracyjnie zastosuj H do bieżącego fragmentu ci dołączonego do poprzedniego wyniku ri1 : ri=H(ri1ci) , gdzie r0=c0 . (Ten krok może być bardziej wyraźny po zapoznaniu się z poniższym przykładem).
  • Wydajność H jest wynikiem końcowym rm+1 .

Zadanie

Napisz program lub funkcję, która przyjmuje na wejściu dodatnią liczbę całkowitą n , funkcję skrótu H jako czarną skrzynkę i niepuste ciągi s i zwraca ten sam wynik co H na tych samych wejściach.

To jest , więc wygrywa najkrótsza odpowiedź w każdym języku.

Przykład

Powiedzmy, że n=5 , więc nasza podana funkcja skrótu H przyjmuje łańcuchy o długości 10 i zwraca łańcuchy o długości 5.

  • Biorąc pod uwagę s="Programming Puzzles" , otrzymujemy następujące fragmenty: s1="Progr" , s2="ammin" , s3="g Puz" i s4="zles0" . Zauważ, że s4 trzeba było uzupełnić do długości 5 jednym końcowym zerem.
  • c0="00000" to tylko ciąg pięciu zer, ac5="00101" to pięć cyfr binarnych (101 ), wypełnionych dwoma zerami wiodącymi.
  • Teraz fragmenty są łączone z H :
    r0=c0="00000"
    r1=H(r0c1)=H("00000Progr")
    r2=H(r1c2)=H(H("00000Progr")"ammin") r3=H(r2c3)=H(H(H("00000Progr")"ammin")"g Puz")
    r4=H(r3c4)=H(H(H(H("00000Progr")"ammin")"g Puz")"zles0")
    r5=H(r4c5)=H(H(H(H(H("00000Progr")"ammin")"g Puz")"zles0")"00101")
  • r5 jest naszym wyjściem.

Zobaczmy, jak wyglądałoby to wyjście w zależności od niektórych opcji 1 dla H :

  • Jeśli H("0123456789")="13579" , tj. H zwraca tylko co drugi znak, otrzymujemy:
    r1=H("00000Progr")="00Por"
    r2=H("00Porammin")="0oamn"
    r3=H("0oamng Puz")="omgPz"
    r4=H("omgPzzles0")="mPze0"
    r5=H("mPze000101")="Pe011"
    So "Pe011" needs to be the output if such a H is given as black box function.
  • If H simply returns the first 5 chars of its input, the output of H is "00000". Similarly if H returns the last 5 chars, the output is "00101".
  • If H multiplies the character codes of its input and returns the first five digits of this number, e.g. H("PPCG123456")="56613", then H("Programming Puzzles")="91579".

1 For simplicity, those H are actually not collision resistant, though this does not matter for testing your submission.



I must say it's fun that the example given has the last 'full' hash be of "OMG Puzzles!" effectively omgPzzles0. Well chosen example input!
LambdaBeta

Can we assume some flexibility on the input format for H (e.g. it takes two strings of length n, or a longer string of which it only considers the first 2n characters)?
Delfad0r

Are space characters, e.g., between "g P" valid output?
guest271314

@guest271314 If the space is part of the resulting hash, it needs to be outputted. If the hash is actually "gP", you may not output a space inbetween.
Laikoni

Odpowiedzi:


7

Haskell, 91 90 86 bytes

n!h|let a='0'<$[1..n];c?""=c;c?z=h(c++take n(z++a))?drop n z=h.(++mapM(:"1")a!!n).(a?)

Try it online!

Explanation

a='0'<$[1..n]

Just assigns the string "00...0" ('0' n times) to a


c?""=c
c?z=h(c++take n(z++a))?drop n z

The function ? implements the recursive application of h: c is the hash we have obtained so far (length n), z is the rest of the string. If z is empty then we simply return c, otherwise we take the first n characters of z (possibly padding with zeros from a), prepend c and apply h. This gives the new hash, and then we call ? recursively on this hash and the remaining characters of z.


n!h=h.(++mapM(:"1")a!!n).(a?)

The function ! is the one actually solving the challenge. It takes n, h and s (implicit) as inputs. We compute a?s, and all we have to do is append n in binary and apply h once more. mapM(:"1")a!!n returns the binary representation of n.


1
let in a guard is shorter than using where: Try it online!
Laikoni

2
It looks like mapM(\_->"01")a can be mapM(:"1")a.
xnor

7

R, 159 154 bytes

function(n,H,s,`?`=paste0,`*`=strrep,`/`=Reduce,`+`=nchar,S=0*n?s?0*-(+s%%-n)?"?"/n%/%2^(n:1-1)%%2)(function(x,y)H(x?y))/substring(S,s<-seq(,+S,n),s--n-1)

Try it online!

Yuck! Answering challenges in R is never pretty, but this is horrible. This is an instructive answer on how not to write "normal" R code...

Thanks to nwellnhof for fixing a bug, at a cost of 0 bytes!

Thanks to J.Doe for swapping the operator aliasing to change the precedence, good for -4 bytes.

The explanation below is for the previous version of the code, but the principles remain the same.

function(n,H,s,               # harmless-looking function arguments with horrible default arguments 
                              # to prevent the use of {} and save two bytes
                              # then come the default arguments,
                              # replacing operators as aliases for commonly used functions:
 `+`=paste0,                  # paste0 with binary +
 `*`=strrep,                  # strrep for binary *
 `/`=Reduce,                  # Reduce with binary /
 `?`=nchar,                   # nchar with unary ?
 S=                           # final default argument S, the padded string:
  0*n+                        # rep 0 n times
  s+                          # the original string
  0*-((?s)%%-n)+              # 0 padding as a multiple of n
  "+"/n%/%2^(n:1-1)%%2)       # n as an n-bit number
                              # finally, the function body:
 (function(x,y)H(x+y)) /      # Reduce/Fold (/) by H operating on x + y
  substring(S,seq(1,?S,n),seq(n,?S,n))  # operating on the n-length substrings of S

I think 0*(n-(?s)%%n) doesn't work if n divides s evenly. But 0*-((?s)%%-n) should work.
nwellnhof

@nwellnhof ah, of course, thank you, fixed.
Giuseppe

Minor changes, 155 bytes
J.Doe

1
@J.Doe nice! I saved another byte since seq has 1 as its from argument by default.
Giuseppe

3

C (gcc), 251 bytes

#define P sprintf(R,
b(_){_=_>1?10*b(_/2)+_%2:_;}f(H,n,x)void(*H)(char*);char*x;{char R[2*n+1],c[n+1],*X=x;P"%0*d",n,0);while(strlen(x)>n){strncpy(c,x,n);x+=n;strcat(R,c);H(R);}P"%s%s%0*d",R,x,n-strlen(x),0);H(R);P"%s%0*d",R,n,b(n));H(R);strcpy(X,R);}

Try it online!

Not as clean as the bash solution, and highly improvable.

The function is f taking H as a function that replaces its string input with that string's hash, n as in the description, and x the input string and output buffer.

Description:

#define P sprintf(R,     // Replace P with sprintf(R, leading to unbalanced parenthesis
                         // This is replaced and expanded for the rest of the description
b(_){                    // Define b(x). It will return the integer binary expansion of _
                         // e.g. 5 -> 101 (still as integer)
  _=_>1?                 // If _ is greater than 1
    10*b(_/2)+_%2        // return 10*binary expansion of _/2 + last binary digit
    :_;}                 // otherwise just _
f(H,n,x)                 // Define f(H,n,x)
  void(*H)(char*);       // H is a function taking a string
  char*x; {              // x is a string
  char R[2*n+1],c[n+1],  // Declare R as a 2n-length string and c as a n-length string
  *X=x;                  // save x so we can overwrite it later
  sprintf(R,"%0*d",n,0); // print 'n' 0's into R
  while(strlen(x)>n){    // while x has at least n characters
    strncpy(c,x,n);x+=n; // 'move' the first n characters of x into c
    strcat(R,c);         // concatenate c and R
    H(R);}               // Hash R
  sprintf(R,"%s%s%0*d"   // set R to two strings concatenated followed by some zeroes
    R,x,                 // the two strings being R and (what's left of) x
    n-strlen(x),0);      // and n-len(x) zeroes
  H(R);                  // Hash R
  sprintf(R,"%s%*d",R,n, // append to R the decimal number, 0 padded to width n
    b(n));               // The binary expansion of n as a decimal number
  H(R);strcpy(X,R);}     // Hash R and copy it into where x used to be


I think: 227 bytes (going off of ceilingcat's comment)
Zacharý

3

Ruby, 78 bytes

->n,s,g{(([?0*n]*2*s).chop.scan(/.{#{n}}/)+["%0#{n}b"%n]).reduce{|s,x|g[s+x]}}

Try it online!

How it works:

([?0*n]*2*s).chop    # Padding: add leading and trailing 
                     # zeros, then remove the last one
.scan(/.{#{n}}/)     # Split the string into chunks
                     # of length n
+["%0#{n}b"%n]       # Add the trailing block
.reduce{|s,x|g[s+x]} # Apply the hashing function
                     # repeatedly


2

Bash, 127-ε bytes

Z=`printf %0*d $1` R=$Z
while IFS= read -rn$1 c;do R=$R$c$Z;R=`H<<<${R::2*$1}`;done
H< <(printf $R%0*d $1 `bc <<<"obase=2;$1"`)

Try it online!

This works as a program/function/script/snippet. H must be resolveable to a program or function that will perform the hashing. N is the argument. Example call:

$ H() {
>   sed 's/.\(.\)/\1/g'
> }
$ ./wherever_you_put_the_script.sh 5 <<< "Programming Puzzles"  # if you add a shebang
Pe011

Description:

Z=`printf %0*d $1`

This creates a string of $1 zeroes. This works by calling printf and telling it to print an integer padded to extra argument width. That extra argument we pass is $1, the argument to the program/function/script which stores n.

R=$Z

This merely copies Z, our zero string, to R, our result string, in preparation for the hashing loop.

while IFS= read -rn$1 c; do

This loops over the input every $1 (n) characters loading the read characters into c. If the input ends then c merely ends up too short. The r option ensures that any special characters in the input don't get bash-interpreted. This is the in the title - that r isn't strictly necessary, but makes the function more accurately match the input.

R=$R$c$Z

This concatenates the n characters read from input to R along with zeroes for padding (too many zeroes for now).

R=`H<<<${R::2*$1}`;done

This uses a here string as input to the hash function. The contents ${R::2*$1} are a somewhat esoteric bash parameter substitution which reads: R, starting from 0, only 2n characters.

Here the loop ends and we finish with:

H< <(printf $R%0*d $1 `bc <<<"obase=2;$1"`)

Here the same format string trick is used to 0 pad the number. bc is used to convert it to binary by setting the output base (obase) to 2. The result is passed to the hash function/program whose output is not captured and thus is shown to the user.


Why "127-ε"? Why not just "127"?
Solomon Ucko

I don't know. I was on the fence about the necessity of the r flag. I figured 1 byte doesn't really matter, but if pushed I could shave it.
LambdaBeta

For the read command?
Solomon Ucko

Because without it a `` in the input will be interpreted instead of ignored, so they'd have to be escaped.
LambdaBeta

Maybe add a note about that?
Solomon Ucko

2

Pyth, 24 bytes

Since Pyth doesn't allow H to be used for a function name, I use y instead.

uy+GH+c.[E=`ZQQ.[ZQ.BQ*Z

Try it online! Example is with the "every second character" version of H.


2

Perl 6, 79 68 bytes

{reduce &^h o&[~],comb 0 x$^n~$^s~$n.fmt("%.{$n-$s.comb%-$n}b"): $n}

Try it online!

Explanation

{
  reduce         # Reduce with
    &^h o&[~],   # composition of string concat and hash function
    comb         # Split string
      0 x$^n     # Zero repeated n times
      ~$^s       # Append input string s
      ~$n.fmt("  # Append n formatted
        %.       # with leading zeroes,
        {$n             # field width n for final chunk
         -$s.comb%-$n}  # -(len(s)%-n) for padding,
        b")      # as binary number
      :          # Method call with colon syntax
      $n         # Split into substrings of length n
}

1

Clean, 143 bytes

import StdEnv
r=['0':r]
$n h s=foldl(\a b=h(a++b))(r%(1,n))([(s++r)%(i,i+n-1)\\i<-[0,n..length s]]++[['0'+toChar((n>>(n-p))rem 2)\\p<-[1..n]]])

Try it online!


1

Python 2, 126 113 bytes

lambda n,H,s:reduce(lambda x,y:H(x+y),re.findall('.'*n,'0'*n+s+'0'*(n-len(s)%n))+[bin(n)[2:].zfill(n)])
import re

Try it online!

-13 thanks to Triggernometry.

Yeah, this is an abomination, why can't I just use a built-in to split a string into chunks...? :-(


codegolf.stackexchange.com/a/173952/55696 A while loop is the best builtin I could hope for. 104 bytes
Steven H.

@StevenH. Yeah, especially if you're actually focusing on the golfing itself. >_>
Erik the Outgolfer

'0'*~-n instead of '0'*(len(s)%n) is shorter (and actually correct for shorter inputs).
nwellnhof

@nwellnhof Yeah, but it's definitely not the same thing.
Erik the Outgolfer

Maybe I wasn't clear enough. Your solution gives the wrong answer for strings like Programming Puzz (16 chars). Replacing '0'*(len(s)%n) with '0'*~-n fixes that and saves 7 bytes.
nwellnhof

1

Python 2, 106 102 bytes

For once, the function outgolfs the lambda. -4 bytes for simple syntax manipulation, thanks to Jo King.

def f(n,H,s):
 x='0'*n;s+='0'*(n-len(s)%n)+bin(n)[2:].zfill(n)
 while s:x=H(x+s[:n]);s=s[n:]
 return x

Try it online!


Shouldn't the result be 'Pe011', not 'e011'?
Triggernometry

That it should. Fixed!
Steven H.

Use semi-colons instead of newlines. -4 bytes
Jo King

I didn't realize that worked for while loops as well, thanks!
Steven H.

1

Japt, 27 bytes

òV ú'0 pV¤ùTV)rÈ+Y gOvW}VçT

Try it!

I haven't found any capability for Japt to take functions directly as an input, so this takes a string which is interpreted as Japt code and expects it to define a function. Specifically, OvW takes the third input and interprets it as Japt, then g calls it. Replacing that with OxW allows input as a Javascript function instead, or if the function were (somehow) already stored in W it could just be W and save 2 bytes. The link above has the worked example of H that takes characters at odd indexes, while this one is the "multiply char-codes and take the 5 highest digits" example.

Due to the way Japt takes inputs, s will be U, n will be V, and H will be W

Explanation:

òV                             Split U into segments of length V
   ú'0                         Right-pad the short segment with "0" to the same length as the others
       p     )                 Add an extra element:
        V¤                       V as a base-2 string
          ùTV                    Left-pad with "0" until it is V digits long
              r                Reduce...
                        VçT          ...Starting with "0" repeated V times...
               È       }                                                  ...By applying:
                +Y               Combine with the previous result
                   gOvW          And run W as Japt code



0

oK, 41 bytes

{(x#48)(y@,)/(0N,x)#z,,/$((x+x!-#z)#2)\x}

Try it online!

{                                       } /x is n, y is H, z is s.
                          (x+x!-#z)       /number of padding 0's needed + x
                         (         #2)\x  /binary(x) with this length
                      ,/$                 /to string
                    z,                    /append to z
             (0N,x)#                      /split into groups of length x
       (y@,)/                             /foldl of y(concat(left, right))...
 (x#48)                                   /...with "0"*x as the first left string
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.