Sadzenie drzew w parku - tak szybko, jak to możliwe!


20

To wyzwanie jest inspirowane tą aplikacją . Przypadki testowe są zapożyczone z tej aplikacji.


Jest to wyzwanie z , którego celem jest rozwiązanie największych przypadków testowych w jak najkrótszym czasie. Udostępniono kilka mniejszych przypadków testowych, aby ludzie mogli szybciej testować swoje algorytmy.


Otrzymasz kwadratową siatkę wejściową o wymiarach n-po-n, gdzie 9 <= n <= 12 . Ta siatka zostanie podzielona na n obszarów, w których komórki każdego obszaru mają unikalne identyfikatory (użyję małych liter z al w tekście tutaj, ale możesz wybrać, co chcesz, na przykład liczby całkowite 1-12 ) .

Dane wejściowe mogą wyglądać następująco (opcjonalny format wejściowy):

aabbbbbcc
adddbbbcc
adeeecccc
adddefgcc
hhhdifggg
hdddifffg
hhhiifffg
hihiifffg
iiiiiiggg

Lub łatwiejsze do wizualizacji:

wprowadź opis zdjęcia tutaj

Wyzwanie:

Musisz umieścić 2 * n drzew w tym parku, zgodnie z następującymi zasadami:

  • Powinny być dokładnie 2 drzewa na kolumnę i 2 drzewa na rząd
  • Wszystkie obszary powinny mieć dokładnie 2 drzewa.
  • Żadne drzewa nie mogą przylegać do innego drzewa, pionowo, poziomo lub po przekątnej

Rozwiązaniem powyższego układu jest:

wprowadź opis zdjęcia tutaj

Uwaga: dla każdej układanki jest tylko jedno rozwiązanie

Dodatkowe zasady:

  • Formaty wejściowe i wyjściowe są opcjonalne
    • Wyjściem może być na przykład lista indeksów, siatka z 1/0 wskazującą, czy w tej pozycji znajduje się drzewo, lub zmodyfikowana wersja danych wejściowych, w których drzewa są wskazane
  • Czas wykonania musi być deterministyczny
  • Program musi zakończyć się w ciągu 1 minuty na komputerze @ isaacg
    • Specyfikacja: 4 procesory, procesor i5-4300U przy 1,9 GHz, 7,5G pamięci RAM.
  • W przypadku, gdy Twój program nie może rozwiązać dwóch największych przypadków testowych w ciągu jednej minuty, czas na drugą co do wielkości ( n = 11 ) będzie twój wynik. Przegrasz z rozwiązaniem, które rozwiązuje największy przypadek.

Przypadki testowe:

Mógłbym edytować tę listę, jeśli wydaje się, że przesłania są dostosowane do tych przypadków testowych.

12 na 12 :

--- Input ---
aaaaabccccdd
aaaaabccccdd
aaaaabbbbddd
eeeafffgbghh
eeaafffgbghh
eefffffggghh
eeefijffghhh
iieiijjjjkhh
iiiiijjjjkhk
lljjjjjjjkkk
llllllkkkkkk
llllllkkkkkk
--- Solution ---
aaaaabcccCdD
aaaaaBcCccdd
aAaaabbbbdDd
eeeaffFgBghh
eeAaFffgbghh
eefffffGgGhh
EeefijffghhH
iiEiIjjjjkhh
IiiiijjjjkHk
lljJjJjjjkkk
lLllllkkKkkk
lllLllKkkkkk

11 na 11 :

--- Input ---
aaaaaaabbcc
adddabbbbcc
edddbbbbbbc
eddddbbbbbb
effffggghhh
effffgghhii
eefffjjhhii
eeeejjjhhii
eeejjjjkiii
jjjjjjkkiii
jjjjjkkkiii
--- Solution ---
aaAaaaabbCc
adddAbBbbcc
eDddbbbbbbC
eddDdBbbbbb
effffggGhHh
eFfffGghhii
eefFfjjhHii
EeeejjjhhiI
eeEjjjjKiii
JjjjJjkkiii
jjjjjkKkIii

10 na 10

--- Input ---
aaaaabccdd
aeaabbbccd
aeaabfbgcd
eeeaafggcd
eeeaafghcd
eeeiifghcd
ieiiigghcd
iiijighhcd
jjjjighhcd
jjjggghhdd
--- Solution ---
aaAaabccdD
aeaaBbBccd
aEaabfbgcD
eeeaaFgGcd
eEeAafghcd
eeeiiFghCd
IeiIigghcd
iiijigHhCd
JjJjighhcd
jjjgGghHdd

9 na 9

--- Input ---
aabbbbbcc
adddbbbcc
adeeecccc
adddefgcc
hhhdifggg
hdddifffg
hhhiifffg
hihiifffg
iiiiiiggg
--- Solution ---
aAbBbbbcc
adddbbBcC
adEeEcccc
AdddefgCc
hhhDiFggg
hDddifffG
hhhiIfFfg
HiHiifffg
iiiiiIgGg
--- Input ---
aaabbbccc
aaaabbccc
aaaddbcce
ffddddcce
ffffddeee
fgffdheee
fggfhhhee
iggggheee
iiigggggg
--- Solution ---
aaAbBbccc
AaaabbcCc
aaaDdBcce
fFddddcCe
fffFdDeee
fGffdheeE
fggfHhHee
IggggheeE
iiIgggGgg

„Formaty wejściowe i wyjściowe są opcjonalne, ale powinny być takie same” Co to znaczy? Czy nie mogę wypisać listy zawierającej jedynki i zera dla drzew i drzew innych niż dbanie o wydrukowanie obszarów?
Fatalize

@Fatalize, edytowane. Myślę, że wyjście z listy indeksów lub siatki z 1/0, jak sugerujesz, jest dobrym pomysłem.
Stewie Griffin

1
Informacja (jeśli poprawnie obliczę): Istnieją konfiguracje 3647375398569086976, aby umieścić 24 drzewa w siatce 12 * 12, wystarczy tylko (1): There shall be exactly 2 trees per column, and 2 trees per rowwięc brutalna siła jest prawdopodobnie niemożliwa.
user202729,

„nie powinno być dużym problemem” : osobiście tak myślę. Moja obecna implementacja rozwiązuje pierwszy przypadek testowy w ~ 150ms, a trzeci w 5s, ale nie rozwiązuje ostatniego (czyli „tylko” 11x11) w rozsądnym czasie. Prawdopodobnie wymagałoby to bardziej agresywnego przycinania do przodu - a zatem znacznej ilości dodatkowego kodu - do ukończenia w ciągu 1 minuty.
Arnauld

1
@Arnauld, zmieniłem maksimum na 11, ponieważ jest to największy przypadek testowy. Możesz opublikować swoje rozwiązanie (jako prawidłowe, konkurencyjne zgłoszenie), ale nie wygra, jeśli ktoś opublikuje rozwiązanie, które rozwiązuje wszystkie przypadki testowe, niezależnie od długości kodu. Targi?
Stewie Griffin

Odpowiedzi:


7

JavaScript (ES6), 271 bajtów

Pobiera dane wejściowe jako tablicę tablic znaków. Zwraca tablicę masek bitowych (liczb całkowitych) opisujących pozycję drzew w każdym rzędzie, gdzie najmniej znaczący bit jest pozycją najbardziej na lewo.

f=(a,p=0,r=[S=y=0],w=a.length)=>a.some((R,y)=>a.some((_,x)=>r[y]>>x&1&&(o[k=R[x]]=-~o[k])>2),o=[])?0:y<w?[...Array(1<<w)].some((_,n)=>(k=n^(x=n&-n))<=x*2|k&-k^k|n&(p|p/2|p*2)||r.some((A,i)=>r.some((B,j)=>A&B&n&&i<y&j<i))?0:(w=r[y],f(a,r[y++]=n,r),r[--y]=w,S))&&S:S=[...r]

Sformatowane i skomentowane

f = (                                           // given:
  a,                                            //   - a = input matrix
  p = 0,                                        //   - p = previous bitmask
  r = [                                         //   - r = array of tree bitmasks
        S = y = 0 ],                            //   - S = solution / y = current row
  w = a.length                                  //   - w = width of matrix
) =>                                            //
  a.some((R, y) => a.some((_, x) =>             // if there's at least one area with more
    r[y] >> x & 1 && (o[k = R[x]] = -~o[k]) > 2 // than two trees:
  ), o = []) ?                                  //
    0                                           //   abort right away
  :                                             // else:
    y < w ?                                     //   if we haven't reached the last row:
      [...Array(1 << w)].some((_, n) =>         //     for each possible bitmask n:
        (k = n ^ (x = n & -n)) <= x * 2 |       //       if the bitmask does not consist of
        k & - k ^ k |                           //       exactly two non-consecutive bits,
        n & (p | p / 2 | p * 2) ||              //       or is colliding with the previous
        r.some((A, i) => r.some((B, j) =>       //       bitmask, or generates more than two
          A & B & n && i < y & j < i            //       trees per column:
        )) ?                                    //
          0                                     //         yield 0
        :                                       //       else:
          (                                     //
            w = r[y],                           //         save the previous bitmask
            f(a, r[y++] = n, r),                //         recursive call with the new one
            r[--y] = w,                         //         restore the previous bitmask
            S                                   //         yield S
          )                                     //
      ) && S                                    //     end of some(): return false or S
    :                                           //   else:
      S = [...r]                                //     this is a solution: save a copy in S

Przypadki testowe

Ten fragment kodu zawiera dodatkową funkcję wyświetlania wyników w bardziej czytelnym formacie. Zbyt wolne jest rozwiązywanie ostatniego przypadku testowego.

Oczekiwany czas działania: ~ 5 sekund.


Uwaga OP: To oświadczenie zostało złożone, gdy wyzwanie było wyzwaniem polegającym na grze w golfa. Jest zatem całkowicie poprawny, nawet jeśli nie jest zoptymalizowany pod kątem obecnego kryterium wygranej!
Stewie Griffin

Czas: zajmuje ponad minutę na 11x11.
isaacg

Jesteśmy w marynacie, może możesz pomóc. Czy możesz wymyślić jakiś sposób na wygenerowanie nietrywialnych większych przypadków układanki?
isaacg

7

C, oficjalny czas: 5 ms dla 12 x 12

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <omp.h>

#define valT char
#define posT int

#ifndef _OPENMP
#  warning Building without OpenMP support
#  define omp_get_max_threads() 1
#  define omp_get_num_threads() 1
#  define omp_get_thread_num() 0
#endif

#define MIN_THREADED_SIZE 11

static void complete(posT n, valT *workspace) {
    const posT s = n * 3 + 2;

    const valT *regions = workspace;
    valT *output = &workspace[n*2+1];

    for(posT y = 0; y < n; ++ y) {
        for(posT x = 0; x < n; ++ x) {
//          putchar(output[y*s+x] ? '*' : '-');
            putchar(regions[y*s+x] + (output[y*s+x] ? 'A' : 'a'));
        }
        putchar('\n');
    }

    _Exit(0);
}

static void solveB(const posT n, valT *workspace, valT *pops, const posT y) {
    const posT s = n * 3 + 2;

    const valT *regions = workspace;
    const valT *remaining = &workspace[n];
    valT *output = &workspace[n*2+1];

    for(posT r = 0; r < n; ++ r) {
        if(pops[r] + remaining[r] < 2) {
            return;
        }
    }

    for(posT t1 = 0; t1 < n - 2; ++ t1) {
        posT r1 = regions[t1];
        if(output[t1+1-s]) {
            t1 += 2;
            continue;
        }
        if(output[t1-s]) {
            ++ t1;
            continue;
        }
        if((pops[t1+n] | pops[r1]) & 2 || output[t1-1-s]) {
            continue;
        }
        output[t1] = 1;
        ++ pops[t1+n];
        ++ pops[r1];
        for(posT t2 = t1 + 2; t2 < n; ++ t2) {
            posT r2 = regions[t2];
            if(output[t2+1-s]) {
                t2 += 2;
                continue;
            }
            if(output[t2-s]) {
                ++ t2;
                continue;
            }
            if((pops[t2+n] | pops[r2]) & 2 || output[t2-1-s]) {
                continue;
            }
            output[t2] = 1;
            ++ pops[t2+n];
            ++ pops[r2];
            if(y == 0) {
                complete(n, &workspace[-s*(n-1)]);
            }
            solveB(n, &workspace[s], pops, y - 1);
            output[t2] = 0;
            -- pops[t2+n];
            -- pops[r2];
        }
        output[t1] = 0;
        -- pops[t1+n];
        -- pops[r1];
    }
}

static void solve(const posT n, valT *workspace) {
    const posT s = n * 3 + 2;

    valT *regions = workspace;
    valT *remaining = &workspace[n];
    valT *pops = &workspace[n*s];
//  memset(&remaining[n*s], 0, n * sizeof(valT));

    for(posT y = n; (y --) > 0;) {
        memcpy(&remaining[y*s], &remaining[(y+1)*s], n * sizeof(valT));
        for(posT x = 0; x < n; ++ x) {
            valT r = regions[y*s+x];
            valT *c = &remaining[y*s+r];
            valT *b = &pops[r*3];
            if(*c == 0) {
                *c = 1;
                b[0] = y - 1;
                b[1] = x - 1;
                b[2] = x + 1;
            } else if(x < b[1] || x > b[2] || y < b[0]) {
                *c = 2;
            } else {
                b[1] = b[1] > (x - 1) ? b[1] : (x - 1);
                b[2] = b[2] < (x + 1) ? b[2] : (x + 1);
            }
        }
//      memset(&output[y*s], 0, (n+1) * sizeof(valT));
    }
    memset(pops, 0, n * 2 * sizeof(valT));

    posT sz = (n + 1) * s + n * 3;
    if(n >= MIN_THREADED_SIZE) {
        for(posT i = 1; i < omp_get_max_threads(); ++ i) {
            memcpy(&workspace[i*sz], workspace, sz * sizeof(valT));
        }
    }

#pragma omp parallel for if (n >= MIN_THREADED_SIZE)
    for(posT t1 = 0; t1 < n - 2; ++ t1) {
        valT *workspace2 = &workspace[omp_get_thread_num()*sz];
        valT *regions = workspace2;
        valT *output = &workspace2[n*2+1];
        valT *pops = &workspace2[n*s];

        posT r1 = regions[t1];
        output[t1] = pops[t1+n] = pops[r1] = 1;
        for(posT t2 = t1 + 2; t2 < n; ++ t2) {
            posT r2 = regions[t2];
            output[t2] = pops[t2+n] = 1;
            ++ pops[r2];
            solveB(n, &regions[s], pops, n - 2);
            output[t2] = pops[t2+n] = 0;
            -- pops[r2];
        }
        output[t1] = pops[t1+n] = pops[r1] = 0;
    }
}

int main(int argc, const char *const *argv) {
    if(argc < 2) {
        fprintf(stderr, "Usage: %s 'grid-here'\n", argv[0]);
        return 1;
    }

    const char *input = argv[1];
    const posT n = strchr(input, '\n') - input;
    const posT s = n * 3 + 2;

    posT sz = (n + 1) * s + n * 3;
    posT threads = (n >= MIN_THREADED_SIZE) ? omp_get_max_threads() : 1;
    valT *workspace = (valT*) calloc(sz * threads, sizeof(valT));
    valT *regions = workspace;

    for(posT y = 0; y < n; ++ y) {
        for(posT x = 0; x < n; ++ x) {
            regions[y*s+x] = input[y*(n+1)+x] - 'a';
        }
    }

    solve(n, workspace);

    fprintf(stderr, "Failed to solve grid\n");
    return 1;
}

Kompilowany z GCC 7 przy użyciu flag -O3i -fopenmp. Powinny mieć podobne wyniki w dowolnej wersji GCC z zainstalowanym OpenMP.

gcc-7 Trees.c -O3 -fopenmp -o Trees

Format wejściowy i wyjściowy są podane w pytaniu.

Na mojej maszynie potrzeba 0,009s 0,008s 0,005s dla przykładu 12x12 i 0,022s 0,020s 0,019s, aby uruchomić wszystkie przykłady. Na komputerze testowym isaacg zgłasza 5ms dla przykładu 12x12 przy użyciu oryginalnej (nie-wątkowej) wersji kodu.

Stosowanie:

./Trees 'aaabbbccc
aaaabbccc
aaaddbcce
ffddddcce
ffffddeee
fgffdheee
fggfhhhee
iggggheee
iiigggggg'

Po prostu prosty solver z brutalną siłą, działający na jednym rzędzie na raz. Działa z dobrą prędkością, wcześnie rozpoznając niemożliwe sytuacje (np. Nie pozostały komórki regionu, ale mniej niż 2 drzewa w regionie).

Pierwsza aktualizacja poprawia trafienia do pamięci podręcznej poprzez umieszczenie powiązanych danych blisko siebie w pamięci i sprawia, że ​​obliczenia możliwych drzew pozostających w segmencie są nieco bardziej inteligentne (teraz uwzględnia to, że drzewa nie mogą sąsiadować). Wyodrębnia również najbardziej zewnętrzną pętlę, tak że w najgorętszej części algorytmu potrzeba mniej specjalnych przypadków.

Druga aktualizacja sprawia, że ​​najbardziej zewnętrzna pętla działa równolegle na dostępnych procesorach (przy użyciu OpenMP), zapewniając liniowe zwiększenie prędkości. Jest to włączone tylko dla n> = 11, ponieważ narzut odradzających się wątków przewyższa zalety mniejszych sieci.


Oficjalny czas: 5ms dla 12x12. Jeśli ktoś się zbliży, będziemy potrzebować większych przypadków testowych.
isaacg

Jesteśmy w marynacie, może możesz pomóc. Czy możesz wymyślić jakiś sposób na wygenerowanie nietrywialnych większych przypadków układanki?
isaacg

@isaacg Dobrze z ilustrowanego przykładu, wydaje się, że oryginalne siatki zostały wykonane przez umieszczenie drzew w pierwszej kolejności (w schemacie rycerskim z niewielkimi zmianami w tym przykładzie, ale chyba każdy wzór z 2 drzewami w rzędzie i kolumnie działałby), a następnie dopasowanie regionów wokół je, aby każdy region zawierał 2 drzewa. Wydaje się, że taka metoda powinna być na tyle prostą metodą, aby człowiek podążał za dowolnie dużymi siatkami.
Dave

W rzeczywistości, patrząc ponownie, nie jest to wzór rycerza z niewielkimi zmianami, ale wzór zawijania, w którym każde drzewo jest przesunięte (1,2) w stosunku do poprzedniego. Po utworzeniu wzorca możesz permutować wiersze i kolumny, aby tworzyć mniej ustrukturyzowane rozwiązania, o ile nie pozostawiają drzew przylegających.
Dave

5

Java (OpenJDK 8) , oficjalny czas: 1,2 s na 12 x 12

edycja: już nie koduj golfa

import java.util.*;

// Callable method, takes an int[][] and modifies it
static void f(int[][] areas){
    List<List<BitSet>> areaBitSets = new ArrayList<>();
    List<List<BitSet>> areaTreeBitSets = new ArrayList<>();
    for(int i = 0; i < areas.length; i++){
        areaBitSets.add(new ArrayList<BitSet>());
        areaTreeBitSets.add(new ArrayList<BitSet>());
    }

    // Add a bitset to our list representing each possible square, grouped by area
    for(int i=0; i < areas.length; i++){
        for(int j=0; j < areas.length; j++){
            BitSet b = new BitSet();
            b.set(i*areas.length + j);
            areaBitSets.get(areas[i][j]).add(b);
        }
    }

    // Fold each set onto itself so each area bitset has two trees
    for(int i=0; i < areas.length; i++){
        for(int j=0; j<areaBitSets.get(i).size()-1; j++){
            for(int k=j+1; k <areaBitSets.get(i).size(); k++){
                if(canFoldTogether(areaBitSets.get(i).get(j),areaBitSets.get(i).get(k), areas.length)){
                    BitSet b = (BitSet)areaBitSets.get(i).get(j).clone();
                    b.or(areaBitSets.get(i).get(k));
                    areaTreeBitSets.get(i).add(b);
                }
            }
        }
    }

    // Starting with area 0 add each area one at a time doing Cartesian products
    Queue<BitSet> currentPossibilities = new LinkedList<>();
    Queue<BitSet> futurePossibilities = new LinkedList<>();
    currentPossibilities.addAll(areaTreeBitSets.get(0));

    for(int i=1; i < areaTreeBitSets.size(); i++){
        while(!currentPossibilities.isEmpty()){
            BitSet b= (BitSet)currentPossibilities.poll().clone();

            for(BitSet c: areaTreeBitSets.get(i)){
                if(canFoldTogether(b,c,areas.length)){
                    BitSet d=(BitSet)b.clone();
                    d.or(c);
                    futurePossibilities.add(d);
                }
            }
        }
        currentPossibilities.addAll(futurePossibilities);
        futurePossibilities.clear();
    }

    // Get final output and modify the array
    BitSet b = currentPossibilities.poll();
    for(int i=0; i<areas.length*areas.length; i++){
        areas[i/areas.length][i%areas.length] = b.get(i)?1:0;
    }
}

// Helper method which determines whether combining two bitsets
// will still produce a valid output
static boolean canFoldTogether(BitSet a, BitSet b, int size){

    // See if there are trees too close to each other
    int c=-1;
    while((c=a.nextSetBit(c+1))>=0){
        int d=-1;
        while((d=b.nextSetBit(d+1))>=0){
            int r1=c/size;
            int r2=d/size;
            int c1=c%size;
            int c2=d%size;

            int rDifference = r1>r2 ? r1-r2 : r2-r1;
            int cDifference = c1>c2 ? c1-c2 : c2-c1;
            if(rDifference<2 && cDifference<2)
                return false;
        }
    }

    // Check for row and column cardinality
    BitSet f,g;
    for(int i=0; i<size; i++){
        f = new BitSet();
        f.set(i*size,(i+1)*size);
        g=(BitSet)f.clone();
        f.and(a);
        g.and(b);
        f.or(g);
        if(f.cardinality()>2){
            return false;
        }


        f=new BitSet();
        for(int j = 0; j<size; j++){
            f.set(j*size+i);
        }
        g=(BitSet)f.clone();
        f.and(a);
        g.and(b);
        f.or(g);
        if(f.cardinality()>2){
            return false;
        }
    }

    return true;
}

Wypróbuj online!

Łącze TIO jest przeznaczone do skrzynki testowej 12x12. TIO zgłasza 2,429 dla czasu działania.

Pobiera na wejściu tablicę liczb całkowitych i modyfikuje tablicę, aby zawierała 1 dla drzew i 0 dla drzew innych niż drzewa.

Działa to dla wszystkich przypadków testowych. Największa walizka testowa działa na moim komputerze w niecałą sekundę, chociaż mam dość mocną maszynę

Kod testowy dla 12x12, można modyfikować dla innych

public static void main(String[] args){
    int[][] test = {{0,  0,  0,  0,  0,  1,  2,  2,  2,  2,  3,  3}, 
            {0,  0,  0,  0,  0,  1,  2,  2,  2,  2,  3,  3}, 
            {0,  0,  0,  0,  0,  1,  1,  1,  1,  3,  3,  3}, 
            {4,  4,  4,  0,  5,  5,  5,  6,  1,  6,  7,  7}, 
            {4,  4,  0,  0,  5,  5,  5,  6,  1,  6,  7,  7}, 
            {4,  4,  5,  5,  5,  5,  5,  6,  6,  6,  7,  7}, 
            {4,  4,  4,  5,  8,  9,  5,  5,  6,  7,  7,  7}, 
            {8,  8,  4,  8,  8,  9,  9,  9,  9,  10,  7,  7}, 
            {8,  8,  8,  8,  8,  9,  9,  9,  9,  10,  7,  10}, 
            {11,  11,  9,  9,  9,  9,  9,  9,  9,  10,  10,  10}, 
            {11,  11,  11,  11,  11,  11,  10,  10,  10,  10,  10,  10}, 
            {11,  11,  11,  11,  11,  11,  10,  10,  10,  10,  10,  10}};

    long l = System.currentTimeMillis();
    f(test);
    System.out.println("12x12: " + (System.currentTimeMillis() - l) + "ms");

    for(int[] t : test){
        System.out.println(Arrays.toString(t));
    }

}

Produkuje to na moim komputerze:

12x12: 822ms
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]
[0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0]
[0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
[0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0]

Uwaga OP: To oświadczenie zostało złożone, gdy wyzwanie było wyzwaniem polegającym na grze w golfa. Jest zatem całkowicie poprawny, nawet jeśli nie jest (tylko) zoptymalizowany pod kątem obecnego kryterium wygranej!
Stewie Griffin

@StewieGriffin dzięki za komentarz. Kiedy będę miał okazję, popracuję nad jego uporządkowaniem, ponieważ nie jest już kodem do gry w golfa i
sprawdzę,

Oficjalny czas: 1,2 sekundy na 12 x 12.
isaacg

Jesteśmy w marynacie, może możesz pomóc. Czy możesz wymyślić jakiś sposób na wygenerowanie nietrywialnych większych przypadków układanki?
isaacg

4

Clingo , ≈ 7 ms dla 12 × 12, 116 bajtów

{t(X,Y):c(X,Y,Z)}=2:-Z=1..n.
:-X=1..n,{t(X,1..n)}!=2.
:-Y=1..n,{t(1..n,Y)}!=2.
:-t(X,Y),t(X+1,Y;X+1,Y+1;X,Y+1;X-1,Y+1).

(Nowe linie są opcjonalne i nie są liczone).

Uruchom z clingo plant.lp - -c n=<n>gdzie <n>jest rozmiar siatki. Format wejściowy jest lista c(X,Y,Z).instrukcji dla każdej komórki ( X, Y) kolorowe Z, z ≤ 1 X, Y, Zn, oddzielone spacją opcjonalnym. Dane wyjściowe obejmują t(X,Y)dla każdego drzewa w ( X,Y ).

Czas nie ma większego znaczenia, ponieważ jest to po prostu czas uruchamiania, więc rozważ to jako głos na większe przypadki testowe.

Próbny

$ clingo plant.lp -c n=12 - <<EOF
> c(1,1,1). c(2,1,1). c(3,1,1). c(4,1,1). c(5,1,1). c(6,1,2). c(7,1,3). c(8,1,3). c(9,1,3). c(10,1,3). c(11,1,4). c(12,1,4).
> c(1,2,1). c(2,2,1). c(3,2,1). c(4,2,1). c(5,2,1). c(6,2,2). c(7,2,3). c(8,2,3). c(9,2,3). c(10,2,3). c(11,2,4). c(12,2,4).
> c(1,3,1). c(2,3,1). c(3,3,1). c(4,3,1). c(5,3,1). c(6,3,2). c(7,3,2). c(8,3,2). c(9,3,2). c(10,3,4). c(11,3,4). c(12,3,4).
> c(1,4,5). c(2,4,5). c(3,4,5). c(4,4,1). c(5,4,6). c(6,4,6). c(7,4,6). c(8,4,7). c(9,4,2). c(10,4,7). c(11,4,8). c(12,4,8).
> c(1,5,5). c(2,5,5). c(3,5,1). c(4,5,1). c(5,5,6). c(6,5,6). c(7,5,6). c(8,5,7). c(9,5,2). c(10,5,7). c(11,5,8). c(12,5,8).
> c(1,6,5). c(2,6,5). c(3,6,6). c(4,6,6). c(5,6,6). c(6,6,6). c(7,6,6). c(8,6,7). c(9,6,7). c(10,6,7). c(11,6,8). c(12,6,8).
> c(1,7,5). c(2,7,5). c(3,7,5). c(4,7,6). c(5,7,9). c(6,7,10). c(7,7,6). c(8,7,6). c(9,7,7). c(10,7,8). c(11,7,8). c(12,7,8).
> c(1,8,9). c(2,8,9). c(3,8,5). c(4,8,9). c(5,8,9). c(6,8,10). c(7,8,10). c(8,8,10). c(9,8,10). c(10,8,11). c(11,8,8). c(12,8,8).
> c(1,9,9). c(2,9,9). c(3,9,9). c(4,9,9). c(5,9,9). c(6,9,10). c(7,9,10). c(8,9,10). c(9,9,10). c(10,9,11). c(11,9,8). c(12,9,11).
> c(1,10,12). c(2,10,12). c(3,10,10). c(4,10,10). c(5,10,10). c(6,10,10). c(7,10,10). c(8,10,10). c(9,10,10). c(10,10,11). c(11,10,11). c(12,10,11).
> c(1,11,12). c(2,11,12). c(3,11,12). c(4,11,12). c(5,11,12). c(6,11,12). c(7,11,11). c(8,11,11). c(9,11,11). c(10,11,11). c(11,11,11). c(12,11,11).
> c(1,12,12). c(2,12,12). c(3,12,12). c(4,12,12). c(5,12,12). c(6,12,12). c(7,12,11). c(8,12,11). c(9,12,11). c(10,12,11). c(11,12,11). c(12,12,11).
> EOF
clingo version 5.1.0
Reading from plant.lp ...
Solving...
Answer: 1
c(1,1,1) c(2,1,1) c(3,1,1) c(4,1,1) c(5,1,1) c(6,1,2) c(7,1,3) c(8,1,3) c(9,1,3) c(10,1,3) c(11,1,4) c(12,1,4) c(1,2,1) c(2,2,1) c(3,2,1) c(4,2,1) c(5,2,1) c(6,2,2) c(7,2,3) c(8,2,3) c(9,2,3) c(10,2,3) c(11,2,4) c(12,2,4) c(1,3,1) c(2,3,1) c(3,3,1) c(4,3,1) c(5,3,1) c(6,3,2) c(7,3,2) c(8,3,2) c(9,3,2) c(10,3,4) c(11,3,4) c(12,3,4) c(1,4,5) c(2,4,5) c(3,4,5) c(4,4,1) c(5,4,6) c(6,4,6) c(7,4,6) c(8,4,7) c(9,4,2) c(10,4,7) c(11,4,8) c(12,4,8) c(1,5,5) c(2,5,5) c(3,5,1) c(4,5,1) c(5,5,6) c(6,5,6) c(7,5,6) c(8,5,7) c(9,5,2) c(10,5,7) c(11,5,8) c(12,5,8) c(1,6,5) c(2,6,5) c(3,6,6) c(4,6,6) c(5,6,6) c(6,6,6) c(7,6,6) c(8,6,7) c(9,6,7) c(10,6,7) c(11,6,8) c(12,6,8) c(1,7,5) c(2,7,5) c(3,7,5) c(4,7,6) c(5,7,9) c(6,7,10) c(7,7,6) c(8,7,6) c(9,7,7) c(10,7,8) c(11,7,8) c(12,7,8) c(1,8,9) c(2,8,9) c(3,8,5) c(4,8,9) c(5,8,9) c(6,8,10) c(7,8,10) c(8,8,10) c(9,8,10) c(10,8,11) c(11,8,8) c(12,8,8) c(1,9,9) c(2,9,9) c(3,9,9) c(4,9,9) c(5,9,9) c(6,9,10) c(7,9,10) c(8,9,10) c(9,9,10) c(10,9,11) c(11,9,8) c(12,9,11) c(1,10,12) c(2,10,12) c(3,10,10) c(4,10,10) c(5,10,10) c(6,10,10) c(7,10,10) c(8,10,10) c(9,10,10) c(10,10,11) c(11,10,11) c(12,10,11) c(1,11,12) c(2,11,12) c(3,11,12) c(4,11,12) c(5,11,12) c(6,11,12) c(7,11,11) c(8,11,11) c(9,11,11) c(10,11,11) c(11,11,11) c(12,11,11) c(1,12,12) c(2,12,12) c(3,12,12) c(4,12,12) c(5,12,12) c(6,12,12) c(7,12,11) c(8,12,11) c(9,12,11) c(10,12,11) c(11,12,11) c(12,12,11) t(1,7) t(1,9) t(2,3) t(2,11) t(3,5) t(3,8) t(4,10) t(4,12) t(5,5) t(5,8) t(6,2) t(6,10) t(7,4) t(7,12) t(8,2) t(8,6) t(9,4) t(9,11) t(10,1) t(10,6) t(11,3) t(11,9) t(12,1) t(12,7)
SATISFIABLE

Models       : 1+
Calls        : 1
Time         : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time     : 0.000s

Aby ułatwić obsługę formatu wejścia / wyjścia, oto programy w języku Python do konwersji zi do formatu podanego w wyzwaniu.

Wejście

import sys
print(' '.join("c({},{},{}).".format(x + 1, y + 1, ord(cell) - ord('a') + 1) for y, row in enumerate(sys.stdin.read().splitlines()) for x, cell in enumerate(row)))

Wynik

import re
import sys
for line in sys.stdin:
    c = {(int(x), int(y)): int(z) for x, y, z in re.findall(r'\bc\((\d+),(\d+),(\d+)\)', line)}
    if c:
        t = {(int(x), int(y)) for x, y in re.findall(r'\bt\((\d+),(\d+)\)', line)}
        n, n = max(c)
        for y in range(1, n + 1):
            print(''.join(chr(ord('aA'[(x, y) in t]) + c[x, y] - 1) for x in range(1, n + 1)))
        print()

Wygląda na to, że potrzebujemy większego przypadku testowego. Przy okazji wygrałbyś golfową wersję tego pytania - wystarczy zmienić 2 na 1.
Dave

Przepraszam, że oficjalny czas to 18 milisekund na 12 x 12. 1 literówka, to kłopot ze skrótami.
isaacg

Jesteśmy w marynacie, może możesz pomóc. Czy możesz wymyślić jakiś sposób na wygenerowanie nietrywialnych większych przypadków układanki?
isaacg
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.