Python ~ 451 cyfr
Jest to część biblioteki, którą napisałem dla problemu podziału na czynniki pierwsze , z usuniętymi niepotrzebnymi funkcjami. Wykorzystuje test pierwotności Baillie-PSW , który jest technicznie testem probabilistycznym, ale do tej pory nie są znane pseudopierwsze - a nawet nagroda pieniężna, jeśli możesz ją znaleźć (lub za dostarczenie dowodu, że nie istnieje) .
Edycja : Nie zdawałem sobie sprawy, że Python ma wbudowane modułowe potęgowanie. Zamiana własnego na wbudowane powoduje wzrost wydajności o około 33%.
moja_math.py
# legendre symbol (a|m)
# note: returns m-1 if a is a non-residue, instead of -1
def legendre(a, m):
return pow(a, (m-1) >> 1, m)
# strong probable prime
def is_sprp(n, b=2):
d = n-1
s = 0
while d&1 == 0:
s += 1
d >>= 1
x = pow(b, d, n)
if x == 1 or x == n-1:
return True
for r in range(1, s):
x = (x * x)%n
if x == 1:
return False
elif x == n-1:
return True
return False
# lucas probable prime
# assumes D = 1 (mod 4), (D|n) = -1
def is_lucas_prp(n, D):
P = 1
Q = (1-D) >> 2
# n+1 = 2**r*s where s is odd
s = n+1
r = 0
while s&1 == 0:
r += 1
s >>= 1
# calculate the bit reversal of (odd) s
# e.g. 19 (10011) <=> 25 (11001)
t = 0
while s > 0:
if s&1:
t += 1
s -= 1
else:
t <<= 1
s >>= 1
# use the same bit reversal process to calculate the sth Lucas number
# keep track of q = Q**n as we go
U = 0
V = 2
q = 1
# mod_inv(2, n)
inv_2 = (n+1) >> 1
while t > 0:
if t&1 == 1:
# U, V of n+1
U, V = ((U + V) * inv_2)%n, ((D*U + V) * inv_2)%n
q = (q * Q)%n
t -= 1
else:
# U, V of n*2
U, V = (U * V)%n, (V * V - 2 * q)%n
q = (q * q)%n
t >>= 1
# double s until we have the 2**r*sth Lucas number
while r > 0:
U, V = (U * V)%n, (V * V - 2 * q)%n
q = (q * q)%n
r -= 1
# primality check
# if n is prime, n divides the n+1st Lucas number, given the assumptions
return U == 0
# primes less than 212
small_primes = set([
2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97,101,103,107,109,113,
127,131,137,139,149,151,157,163,167,173,
179,181,191,193,197,199,211])
# pre-calced sieve of eratosthenes for n = 2, 3, 5, 7
indices = [
1, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97,101,103,107,109,113,121,127,131,
137,139,143,149,151,157,163,167,169,173,
179,181,187,191,193,197,199,209]
# distances between sieve values
offsets = [
10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6,
6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6,
4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2]
max_int = 2147483647
# an 'almost certain' primality check
def is_prime(n):
if n < 212:
return n in small_primes
for p in small_primes:
if n%p == 0:
return False
# if n is a 32-bit integer, perform full trial division
if n <= max_int:
i = 211
while i*i < n:
for o in offsets:
i += o
if n%i == 0:
return False
return True
# Baillie-PSW
# this is technically a probabalistic test, but there are no known pseudoprimes
if not is_sprp(n): return False
a = 5
s = 2
while legendre(a, n) != n-1:
s = -s
a = s-a
return is_lucas_prp(n, a)
# next prime strictly larger than n
def next_prime(n):
if n < 2:
return 2
# first odd larger than n
n = (n + 1) | 1
if n < 212:
while True:
if n in small_primes:
return n
n += 2
# find our position in the sieve rotation via binary search
x = int(n%210)
s = 0
e = 47
m = 24
while m != e:
if indices[m] < x:
s = m
m = (s + e + 1) >> 1
else:
e = m
m = (s + e) >> 1
i = int(n + (indices[m] - x))
# adjust offsets
offs = offsets[m:]+offsets[:m]
while True:
for o in offs:
if is_prime(i):
return i
i += o
Przykładowy skrypt testowy:
from time import clock
from my_math import *
n = i = 317**79
while True:
i *= 317
time1 = clock()
n, o = next_prime(i), n
span = clock()-time1
if span > 10:
break
print(len(str(n)), span)
print(o)
Wybrano współczynnik 317, ponieważ jest to w przybliżeniu pierwiastek kwadratowy z 10000
, dodając około 2,5 cyfry na iterację (i ponieważ podwojenie było zbyt wolne, aby usiąść). Dane wyjściowe pokazują bieżącą liczbę cyfr i czas potrzebny.
Przykładowe wyniki:
201 0.13121248650317288
203 0.059535499623555505
206 0.9157767258129175
208 0.2583420518529589
211 0.15367400046653978
213 0.32343915218274955
216 1.3962866788935466
218 0.5986165839513125
221 0.973842206202185
223 2.346910291671148
...
428 0.932809896229827
431 4.345940056627313
433 9.511724255457068
436 6.089835998709333
438 1.3793498894412721
441 4.290633027381972
443 3.5102506044762833
446 3.1629148397352083
448 3.364759208223404
451 7.34668009481652
1551197868099891386459896063244381932060770425565921999885096817830297496627504652115239001983985153119775350914638552307445919773021758654815641382344720913548160379485681746575245251059529720935264144339378936233043585239478807971817857394193701584822359805681429741446927344534491412763713568490429195862973508863067230162660278070962484418979417980291904500349345162151774412157280412235743457342694749679453616265540134456421369622519723266737913
Cały kod jest teraz kompatybilny z Python 3.